COMPLEXES OF POLYELECTROLYTES WITH QUANTUM DOTS

M. Adameczk1, H. J. Hoel2, J. Barbasz3, P. Warszyński1

1Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Cracow, Poland
2Institute for Cancer Research, Norwegian Radium Hospital, Oslo, Norway
E-mail: ncmadamec@cyf-kr.edu.pl

THE GOAL
Formation of nanocapsules by sequential adsorption of oppositely charged polyelectrolytes with quantum dots.

MATERIALS
Two different polyelectrolyte couples were used:
- Cationic poly(allylamine hydrochloride) (PAH) with anionic poly (sodium styrene sulfonate) (PSS)
- Cationic poly-L-lysine hydrobromide (PLL) with anionic poly-D-glutamic acid sodium salt (PGA) or PGA pegylated (PGA-y-PEG)

Negatively charged CdTe quantum dots applied in complexes with polyelectrolytes were purchased from PlasmaChem GmBH (Germany).

METHODS
- Dynamic light scattering (DLS) - determination of size and zeta potential of complexes
- Atomic force microscope (AFM) measurements of complexes deposited on mica
- Flow cytometer – determination of cytotoxicity of the capsules

RESULTS

METHODS

Dynamic Light Scattering

Atomic Force Microscope

IN VITRO STUDIES
CdtTe nanoparticles, plain capsules (PGA/PLL, PGA-y-PEG/PLL,) and CdTe-labeled capsules (PGA/PLL/CdTe, PGA-y-PEG/PLL/CdTe) were examined on flow cytometer in respect of their influence on B-lymphoblastoid (B-LCL) cell line proliferation. Control sample was incubated only with cell culture medium and antibiotics.

CONCLUSIONS
- Successful production of different polyelectrolyte – quantum dots fluorescent complexes of sizes within range 20 – 75 nm
- Plain capsules do not affect B-LCL cells proliferation, thus they are biocompatible at all concentrations tested
- QDs stop affecting the proliferation of B-LCL cells at a concentration of 0.08 μg/ml
- PGA/PLL capsules labelled with QDs stop affecting the B-LCL cell proliferation at a dilution of 1:400, which corresponds with 0.25 μg/ml CdTe concentration

Acknowledgements: this work was supported by the "Krakow Interdisciplinary PhD – Project in Nanoscience and Advanced Nanostructures" operated within the Foundation for Polish Science MPD Programme co-financed by the EU European Regional Development Fund and ERA-NET MATERA « NANOMEDPART » project.