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A modification of the Blonder-Tinkham-Klapwijk (BTK) model
is proposed for the description of the ferromagnet-superconductor
(FM/SC) interface. Modelling the contact potential with a rect-
angular barrier, we investigate the influence of the barrier width
at the interface on values of spin-polarisation measured by point
contact Andreev reflection. Results suggesting that neglecting the
width of the barrier at the interface can lead to overestimation
of spin-polarisation using the original BTK model are presented.
This effect is particularly strong for low values of polarisation and
vanishes for high polarisation. The impact on analysis of the ex-
perimental data is also discussed.

Model

The original BTK model [1] is slightly modified. We use a rectangular
potential barrier instead of the Dirac’s delta potential and we inves-
tigate the effect of a finite width of potential barrier on the value of
spin polarisation PBTK extracted from the BTK model in the ballistic
limit. Modification of the BTK model results from the fact that real
FM/SC interfaces are imperfect, i.e. chemical, electronic and struc-
tural mismatch between both materials may lead to the conclusion
that the rectangular potential barrier is a better approximation for
these complex situations. This assumption allows us to include the
interference phenomena at the FM/SC interface which are not taken
into account in the case of a delta function potential. The potential
barrier of the simulated contact is shown in Fig. 1. The height (Z) and
width (d) of the potential barrier are free parameters of the model. In
the limiting case, when d → 0, the model of the contact corresponds
to the BTK model.
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Figure 1. Scattering potential profile at the interface FM/SC
allowing to include quantum interference phenomena. In
contrast to BTK theory we assume rectangular potential bar-
rier with height Z and width d.

Theory

For a small bias voltage, the conductance through the metal–
superconductor contact can be evaluated by the formula

GN (V ; d, Z) =
e2

h

∫ +∞

−∞
dE

∂fF−D(E − eV )

∂V

×
[
1 + AN (E; d, Z)−BN (E; d, Z)

]
, (1)

where V is the bias voltage, fF−D(E − eV ; T ) is the equilibrium
Fermi-Dirac distribution, and AN (E; d, Z) and BN (E; d, Z) are the
Andreev reflection and normal reflection probabilities, respectively.
The probabilities AN (E; d, Z) and BN (E; d, Z) can be determined
by solving the Bogoliubov-de Gennes equations[
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where ∆(x) is the local energy gap, E is the quasi-particle energy mea-
sured from the Fermi level µF , and H0 is the one-particle Hamiltonian
in the form

H0 = − h̄2

2m

d2

dx2
+ U(x)− µF (3)

with the potential energy U(x) = ZΘ(x)Θ(d− x), where Θ(x) is the
Heaviside step function.
The BTK model with the Dirac’s delta function potential or the
rectangular barrier potential can be generalised to include the spin-
polarisation P . In this case the total conductance of the contact is
given by the formula

G(V ; d, Z, P ) = (1− P )GN (V ; d, Z, P ) + PGH(V ; d, Z, P ), (4)

where (1 − P )GN (V ; d, Z, P ) and PGH(V ; d, Z, P ) are the fully
unpolarised part and the fully polarised part of the total conduc-
tance, respectively. The fully polarised part is calculated by putting
AN (E; d, Z) = 0 in formula (1). In practice, the equation (4) is used
to extract the values of spin-polarisation from the measurements of
the total conductance by an appropriate fitting procedure.

Results

Applying the scattering matrix method to solve the Bogoliubov-de
Gennes equations we found the probability amplitudes of Andreev
and normal reflections as a function of the width of potential barrier
for different values of the parameter Z. In particular, Fig. 2 shows
the oscillations of the Andreev reflection probability for a few values
of parameter Z. These curves are obtained using Z < µF , where
µF corresponds to the Fermi energy in a typical metal. On the other
hand, for Z > µF we obtained the exponential decay of the Andreev
reflection probability as a function of the potential barrier width.
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Figure 2. Calculated Andreev reflection probability as a func-
tion of the contact barrier.

We performed numerical calculations of the total conductance as a
function of the bias voltage for the widths of the barrier between 0 and
1 nm assuming four different values of the spin-polarisation, namely
0, 40, 80, and 100 percent. To discuss the situation when the oscil-
lations are strongest the parameter Z was taken equal to 6 eV, see
Fig. 2. As a consequence of the periodic nature of the Andreev re-
flections presented in Fig. 2, we obtain a family of curves describing
the conductance as a function of the applied bias voltage. All of the
curves are placed between ones corresponding to the minimum and
maximum values of the Andreev reflection probability. However, with
increasing polarisation the influence of the barrier width becomes less
significant. For example if we compare the results for polarisation
P = 0 with P = 100% we see a far greater variation in the shape of
the conductance curve for the lower value of polarisation.
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Figure 3. (Normalized) Conductance calculated for polari-
sation equal to (a) 0%. (b) 40%, (c) 80% and (d) 100%.
Results for the barrier width between 0 and 1 nm.

In the next step we used BTK theory to fit our theoretical curves for
different width of the barrier and fixed value of spin polarisation. The
value of polarisation (PBTK) extracted from the BTK model varies
significantly from the original value as the barrier width changes. This
effect is particularly strong for low values of polarization. For an un-
polarised sample the value for PBTK resulting from the BTK fit can

vary from 0 to 25% as the barrier width changes (Fig. 4(a)). A sim-
ilar situation, but on a smaller scale, is observed for P = 80 %, with
results PBTK between 80% and 85% (Fig. 4(b)). Since we are not
able to measure the width of the barrier in experiments we believe
that this factor could be responsible for ambiguous results, especially
for measuring low spin polarization.
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Figure 4. Polarisation resulting from the BTK model as a
function of the barrier width in case of the (a) unpolarised
system and (b) polarisation P = 80%.

Direct evidence of advantage arising from using the rectangular bar-
rier is presented in Fig. 5 showing a comparison between calculated
conductance and experimental data obtained for Cu/Nb junction. If
the finite-width barrier is assumed (Fig. 5(a)) the fitting procedure
gives P = 0 as expected, in contrast to results from the original BTK
model suggesting P = 31% (Fig. 5(b)). Additionally, accuracy of the
fitting is significantly better in case of the rectangular barrier.
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Figure 5. Measured and calculated conductance for (a) rect-
angular barrier and (b) BTK model with Dirac’s delta.

Concluding Remarks

In summary, we have investigated the influence of the potential barrier
width on values of the spin-polarisation measured by point contact An-
dreev reflection and we have shown that using a rectangular barrier to
model a metal-superconductor interface allows to perform calculations
with better accuracy. Neglecting the width of the barrier could lead
to an overestimation of the values of spin polarisation extracted from
experimental data using the BTK model. The error is larger for lower
of spin polarisation.
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