

Asymmetric hysteresis loops of systems of bistable nanoscopic wires

Universidad del País Vasco Euskal Herriko Unibertsitatea Joanna Tomkowicz Julian González Krzysztof Kułakowski

AGH - University of Science and Technology, Cracow, Poland University of the Basque Country, San Sebastian, Spain

NANOSMAT- 5: Reims, France, 20.10.2010

Foundation for Polish Science

- The model
- Asymmetry what it means?
- Asymmetric hysteresis loop for system
- "Be or not to be" … Gaussian?
- Possible application

One of typical configuration

- System:
- Lattice: 10x10
- *N* = 16

Wires:

- D = 57 nm
- L = 115 nm
- M = 370 emu/cm³
- *H*_s = 710 Oe
- Gaussian H_s with: $u(H_s) = 5$ or 105 Oe

This system: $N_x = 7$ $N_y = 9$

Interaction

н

Three parts:

- With +Q
- Neutral
- With –Q

Absolute value of magnetic charge $Q = \pi^2 M D^2$

Hysteresis loop and reversed loop

Hysteresis loop and reversed loop

Asymmetry

$$S1 = \int_{-H_m}^{H_m} (1 - M_d(H) / M_s) dH$$

$$S2 = \int_{-H_m}^{H_m} (M_a(H) / M_s + 1) dH$$

 $M_a(H)$ – curve for ascending magnetic field $M_d(H)$ – curve for descending magnetic field H_m – maximal applied field

Asymmetry

Sources of A

- Spatial distribution of the wires
- Distribution of the switching field of the wires
- Distribution of directions of magnetic moments of the wires perpendicular to H.

Three cases:

- I. Different spatial systems with $u(H_s) = 5$ Oe
- II. Different spatial systems with

 $u(H_s) = 105 \text{ Oe}$

III. One spatial system with $u(H_s) = 105$ Oe

Asymmetry distributions for systems I and II (5x10³ systems)

Mean value of absolute value of the asymmetry A (for 10³ systems)

The asymmetry distribution for system III (5x10³ systems)

 $u(H_s) = 105 \text{ Oe}$ $\mu = 87.80 \text{ Oe}$ $\sigma = 57.54 \text{ Oe}$

μ and σ for distributions of A

System No.		μ [Oe]	σ [Oe]
I. Differ.:	$u(H_s) = 50e$	9.47	284.08
II. Differ.:	$u(H_s) = 105 \text{ Oe}$	4.97	282.39
III. The same:	$u(H_s) = 105 \text{ Oe}$	87.80	57.54

Possible applications

The number of state perpendicular to switching field

$$2^{N-N_x}$$

- Each state characterized by its own hysteresis loop (specific shape, in most cases asymmetric)
- For example: magnetic coding

Magnetic coding

One magnetic state

- \Rightarrow check: verified
- \Rightarrow apply field impulse at given point and given intensity
- \Rightarrow modified system new loop shape
- \Rightarrow check: is it proper or not?

 \Rightarrow ...

Sequential verification of the magnetic state of the system

Compared to: password within a password within a password etc.

Possible applications – comments

- If not a lot of wire in the system number of their spatial configurations is high enough to have a lot of sequences of the shapes of M(H).
- We expect: improper signal can modify the state of system as to disable its recurrence (potential safety applications)

- Different curves for descending and ascending magnetic field – due to the wires perpendicular to the applied field
- A is determined mostly by the differences in spatial configurations
- Potential safety applications

Thank you for your attention