Spin-transfer-torque dependence on MgO tunnel barrier thickness in MTJs

W Skowróński 1, T Stobiecki 1, J Wrona 1, G Reiss 2, K Chalapati 3, G S Paraonu 3, S van Dijken 4
1 Department of Electronics, AGH University of Science and Technology, Krakow, Poland
2 Department of Physics, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
3 Low temperature laboratory, Aalto University, P.O.Box 15100, FI-02015 Aalto, Finland
4 Department of Applied Physics, Aalto University, P.O.Box 15100, FI-02015 Aalto, Finland

Motivation
High density and fast MRAH can be implemented using current induced magnetization switching (CIMS) effect [1], caused by the interaction between spin-polarized current and local magnetization of the FL in the MTJ cell, called STT [2]. STT is also utilized in MTJ nanoscalators, that generate signals in the GHz frequency range when supplied with DC current [3].

Aim
To understand the STT effect in order to:
• reduce the critical current density in the CIMS effect
• optimize the MTJ parameters for memory technologies
• apply MTJ in microwave electronics

Sample description

A1. Deposition
• deposited using a Timaris PVD cluster tool system from Singulus Technologies
• linear dynamic deposition (LDD) wedge technology [4]

A2. E-beam lithography
• 3 step lithography process using e-beam lithography, ion milling, lift-off

A3. Wafer level characterization

B2. Setup
Spin-transfer ferromagnetic resonance (ST-FMR) measurement technique takes advantage of a DC voltage generated by a MTJ when supplied with a RF current [7, 8]:
• generation of the DC voltage V_{mix} when the current frequency is in resonance ω with oscillations, arising from the STT
• the RF current was typically swept in the range of 2 - 12 GHz
• MTJ placed in an external magnetic field and at the certain angle, so that the angle θ between FL and RL during spin-torque diode measurement is fixed to 90°

Results and discussion

C1. Torques and torkances

• Parallel and perpendicular torkances derived from the ST-FMR signals
• Separate fitting procedure for each measurement with different DC voltage applied
• Torque numerically integrated from torkance

C2. Summary

• Parallel torque weakly depends on an applied DC bias voltage
• Absolute torque values increases with decreasing tunnel barrier thickness - consistent with a theory [9]
• Perpendicular torque amplitude measured in applied DC bias voltage range is max. 20% of the parallel one
• Strong coupling causes deviation from the theory

References and acknowledgments

Acknowledgments: We would like to thank B. Ocker and J. Langer of Singulus Inc. for development of low RA product MgO MTJ films. Project supported by: the Foundation for Polish Science MPD Programme, co-financed by the EU Regional Development Fund, Ministry of Science and Higher Education grant ‘Intelligent plus’, Polish Ministry of Science and Higher Education grant no. NN 515544538, National center for Magnetic Nanostructures for Application in Spin Electronics – SPINLAB – POIG 02.02.00-00-020/09