INTRODUCTION
Photosystem II (PSII) is a protein-lipid-pigment complex bound in plant thylakoids membranes. Thylakoids are organelles located in chloroplasts of high plants cells.

PSII is involved in photosynthesis – a process using light to produce chemical energy. The excitation energy is transmitted to the special chlorophyll pair called Reaction center. Exit reaction center realises an electron reducing the first electron acceptor: phophorytin molecule. By the same mechanism electrons are transported to next acceptors and ATP and NADPH – chemical energy molecules is formed.

The understanding of electron transport time constants and amplitudes give us information about the efficiency of photosynthesis.

MATERIALS
We studied electron transport in PSII on thylakoids isolated from spinach leaves and investigated the action of two heavy metals often present in the environment: copper and cadmium.

Copper has one of the most toxic effects on plants among heavy metals [2] and photosystem II is the most sensitive site of that ion.

METHODS
Measurements was done on the superhead flurometer using Kautski effect, which consist on studying the comportment of fluorescence of PSII under the effect of continuous light.

The oxidized state of Q, quenches fluorescence. The fluorescence yield gives information about electron transport efficiency. We obtained 3 time constants and corresponding amplitudes. The slowest time constant t_2 (represented on graphs) corresponds to electron transport from PQ$^-$ in the binding place QA to PQ$^-$ in the QB site.

OBSERVATIONS AND CONCLUSION
- Copper and cadmium ions both act on the QA – Fe – QB complex and at high concentration they deactivate photosystem II. At higher concentrations both ions act on light harvesting complexes destroying light harvesting antenna - chlorophylls.
- Measurement also showed that copper is a more efficient electron transport inhibitor than cadmium. Copper concentration at 100µM causes an 83% decrease of active reaction centers, whereas the same concentration of cadmium induces only a 5% decrease.
- We observe a particular effect of copper ions. They act on the cytochrome b_{559} which may be due to the fact that copper is a protonophor. It has also been showed that copper acts on the oxygen-evolving complex (OEC) [1].
- Finally, we could indicate the minimal number of bounding places of metals ions in PSII: 6 bounding places for Cu$^{2+}$ and 4 for Cd$^{2+}$ ions.

REFERENCES

INFLUENCE OF COPPER AND CADMIUM IONS ON THE ELECTRON TRANSPORT IN PHOTOSYSTEM II
A. Hałas, K. Burda, K. Strzałka