

NANOCAPSULES OF POLYELECTROLYTES LABELLED WITH QUANTUM DOTS

M. Adamczak¹, H. J. Hoel², J. Barbasz¹, P. Warszyński¹

¹Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Cracow, Poland ²Institute for Cancer Research, Norvegian Radium Hospital, Oslo, Norway E-mail: ncmadamc@cyf-kr.edu.pl

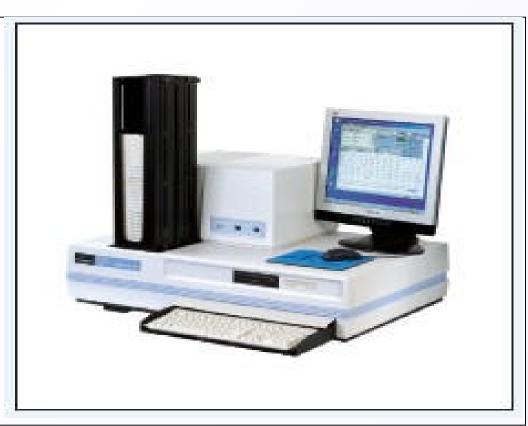
THE GOAL

Formation of nanocapsules by sequential adsorption of oppositely charged polyelectrolytes with quantum dots.

MATERIALS

Two different polyelectrolyte couples were used:

• Cationic poly(allyamine hydrochloride) (PAH) with anionic poly (sodium styrene sulfonate) (PSS)


METHODS

- Dynamic light scattering (DLS) determination of size and zeta potential of complexes
- Atomic force microscope (AFM) measurements of complexes deposited on mica
- Flow cytometer determination of cytotoxicity of the capsules

Atomic Force Microscope

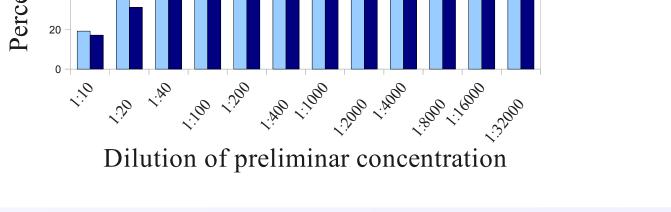

Cationic poly-L-lysine hydrobromide (PLL) with anionic poly-D-glutamic acid sodium salt (PGA) or PGA pegylated (PGA-y-PEG)

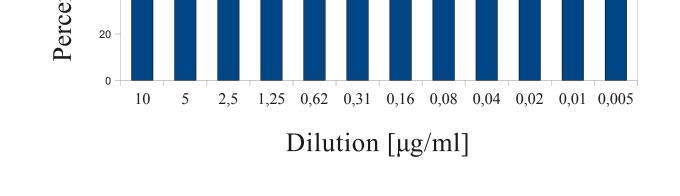
Negatively charged CdTe quantum dots applied in complexes with polyelectrolytes were purchased from PlasmaChem GmBH (Germany).

RESULTS

SIZE OF PLL/CdTe COMPLEXES $\int_{0}^{0} \int_{0}^{0} \int_{0}^$

Dynamic Light Scattering


IN VITRO STUDIES


CdTe nanoparticles, plain capsules (PGA/PLL, PGA-y-PEG/PLL,) and CdTe-labeled capsules (PGA/PLL/CdTe, PGA-y-PEG/PLL/CdTe) were examined on flow cytometer in respect of their influence on B-lymphoblastoid (B-LCL) cell line proliferation. Control sample was incubated only with cell culture medium and antibiotics.

COMPLEX	RATIO	ZETA POTENTIAL [mV]	SIZE [nm]	EFFECT OF NANOCAPSULES ON B-LCL	EFFECT OF CdTe QUANTUM DOTS ON B-LCL
PAH/CdTe	15:85	54	18	140 140 120 120 120 120 120 120 120 12	CELL PROLIFERATION
PSS/PAH/CdTe	60:6:34	-50	55	O CONTROL SAMPLE JO 80 JO 80 JO 60 JO 60	
			10	PGA-y-PEG/PLL/Cdle	

PLL/CdTe	33:03	44	19
PGA/PLL/CdTe	25:26:49	-41	76
PGA-y-PEG/PLL/CdTe	30:25:45	-5	50

CONCLUSIONS

- Succesful production of different polyelectrolyte quantum dots fluorescent complexes of sizes within range 20 75 nm
- Plain capsules do not affect B-LCL cells proliferation, thus they are biocompatible at all concentrations tested
- \bullet QDs stop affecting the proliferation of B-LCL cells at a concentration of 0.08 $\mu g/ml$
- PGA/PLL capsules labelled with QDs stop affecting the B-LCLcell proliferation at a dilution of 1:400, which corresponds with 0.25 µg/ml CdTe concentration

Acknowledgements: this work was supported by the "Krakow Interdisciplinary PhD – Project in Nanoscience and Advanced Nanostructures" operated within the Foundation for Polish Science MPD Programme co-financed by the EU European Regional Development Fund and ERA-NET MATERA « NANOMEDPART » project.

