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Abstract

This thesis describes e�ects of the coupling of spin and spatial degrees of freedom for

electrons con�ned in quantum dots. The discussion is carried mainly in the context

of spin control by orbital degrees of freedom. The dissertation consists of eleven

chapters: introduction (1) and summary of published articles and manuscript that

appeared as a result of PhD research (2). The papers are included in subsequent

chapters (3-10) followed by the manuscript (11). Chapters (3-5) study single and

multiple few-electron lateral quantum dots in the presence of Rashba and Dressel-

haus spin-orbit coupling in terms of mixing of electron orbitals, anisotropy of spin

exchange between neighboring quantum dots and impact of the dot orientation with

respect to crystal host lattice on e�ective Landè factor. In next two chapters (6-7)

we describe proprieties of quantum dots shaped as quantum rings in the context

of breaking the circular symmetry of the charge density by spin-orbit coupling and

possible application of such structures to perform controlled spin rotations. We re-

fer to recent experimental results explaining the anisotropy of spin-orbit coupling

observed in a single self-organized quantum dot (8) and the role of tunnel coupling

on the observed spectrum of the electric dipole spin resonance in gated nanowires

(9). Description of anisotropic spin polarization and lifting of the Pauli blockade

due to spin relaxation and electric dipole spin resonance in nanowire quantum dots

is given in the last two chapters (10-11).



Streszczenie

Poni»sza rozprawa opisuje efekty sprz¦»enia pomi¦dzy spinowym i przestrzennym

stopniem swobody elektronów uwi¦zionych w kropkach kwantowych. Dyskusja pro-

wadzona jest gªównie w kontek±cie kontroli spinu poprzez orbitalny stopie« swobody.

Praca zawiera jedena±cie rozdziaªów: wst¦p (1) oraz podsumowanie artykuªów i ma-

nuskryptu, które powstaªy jako efekt bada« przeprowadzonych w trakcie doktoratu

(2). Publikacje i manuskrypt tworz¡ kolejne rozdziaªy (3-11) rozprawy. W rozdzia-

ªach (3-5) badamy wªasno±ci pojedynczych i wielokrotnych kilkuelektronowych kro-

pek kwantowych w obecno±ci oddziaªywania Rashby oraz Dresselhausa w kontek±cie

mieszania orbitali elektronowych, anizotropii wymiany spinu mi¦dzy s¡siaduj¡cymi

kropkami oraz wpªywu orientacji kropki w odniesieniu do materiaªu podªo»a na efek-

tywny czynnik Landègo. W kolejnych dwóch rozdziaªach (6-7) badamy wªasno±ci

kropek kwantowych w postaci pier±cieni kwantowych w kontek±cie ªamania symetrii

g¦sto±ci ªadunku przez sprz¦»enie spin-orbita i mo»liwo±ci wykorzystania tych struk-

tur do przeprowadzania kontrolowanych obrotów spinu. Odnosimy si¦ do nowych

wyników eksperymentalnych wyja±niaj¡c anizotropi¦ oddziaªywania spin-orbita ob-

serwowan¡ w pojedynczej samozorganizowanej kropce kwantowej (8) oraz wpªyw

sprz¦»enia tunelowego na zmierzone widmo elektrycznych rezonansów spinowych w

bramkowanych drutach póªprzewodnikowych (9). Opis anizotropowej polaryzacji

spinowej oraz znoszenia blokady Pauliego poprzez relaksacj¦ spinow¡ i rezonanse

spinowe w kropkach kwantowych zde�niowanych w nanodrutach jest przedstawiony

w dwóch ostatnich rozdziaªach (10-11).



Samenvatting

Dit proefschrift beschrijft gevolgen van de koppeling van de spin en ruimtelijke vri-

jheidsgraden voor elektronen opgesloten in kwantumstippen. Het centrale thema

betreft de spin controle door orbitale vrijheidsgraden. Het proefschrift bestaat

uit elf hoofdstukken: inleiding (1) en samenvatting van gepubliceerde artikelen

en manuscript, die verschenen als resultaat van dit promotieonderzoek (2). De

papers worden in de volgende hoofdstukken (3-10) gevolgd door het manuscript

(11). Hoofdstukken (3-5) bestuderen enkelvoudige en meervoudige-elektron laterale

kwantumstippen in de aanwezigheid van Rashba en Dresselhaus spin-baan koppeling

in termen van de menging van elektronorbitalen, anisotropie van spin-uitwisseling

tussen naburige kwantumstippen en de impact van de stip oriëntatie met betrekking

tot de kristal gastmatrix op de e�ectieve Landè factor. In de twee volgende hoofd-

stukken (6-7) beschrijven we de eigenschappen van kwantumstippen, die de vorm

hebben van kwantumringen, in de context van het breken van de cirkelvormige sym-

metrie van de ladingsdichtheid door spin-baankoppeling en mogelijke toepassing van

dergelijke structuren om gecontroleerde spin rotaties uit te voeren. We verwijzen

naar recente experimentele resultaten en verklaren de anisotropie van spin-baan

koppeling waargenomen in een zelf-georganiseerde kwantumstip (8) en de rol van

tunnel koppeling op het waargenomen spectrum van de elektrische dipool spin reso-

nantie in 'gated' nanodraden (9). Een beschrijving van de anisotrope spinpolarisatie

en de ophe�ng van de Pauli blokkade ten gevolg van spin relaxatie en elektrische

dipool spin resonantie in nanodraad kwantumstippen wordt gegeven in de laatste

twee hoofdstukken (10-11).
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The present dissertation is composed of a collection of articles that describes the

e�ects of spin-orbit interaction on the electronic structure of arti�cial atoms and

molecules, i.e. single and systems of quantum dots. The dissertation consist of eight

published papers:

A.1 M. P. Nowak and B. Szafran, Coupling of bonding and antibonding electron

orbitals in double quantum dots by spin-orbit interaction,
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A.2 M. P. Nowak and B. Szafran, Time-dependent con�guration-interaction simu-

lations of spin swap in spin-orbit-coupled double quantum dots,

Physical Review B 82, 165316 (2010),

A.3 M. P. Nowak and B. Szafran, Singlet-triplet avoided crossings and e�ective

g-factor versus spatial orientation of spin-orbit-coupled quantum dots,

Physical Review B 83, 035315 (2011),

A.4 M. P. Nowak and B. Szafran, Spin-orbit coupling e�ects in two-dimensional

circular quantum rings: Elliptical deformation of con�ned electron density,

Physical Review B 80, 195319 (2009),

A.5 M. P. Nowak, B. Szafran, and F. M. Peeters, Fano resonances and electron

spin transport through a two-dimensional spin-orbit-coupled quantum ring,

Physical Review B 84, 235319 (2011),

A.6 M. P. Nowak, B. Szafran, F. M. Peeters, B. Partoens, and W. J. Pasek, Tuning

of the spin-orbit interaction in a quantum dot by an in-plane magnetic �eld,

Physical Review B 83, 245324 (2011),

A.7 M. P. Nowak, B. Szafran, and F. M. Peeters, Resonant harmonic generation

and collective spin rotations in electrically driven quantum dots,

Physical Review B 86, 125428 (2012),

A.8 M. P. Nowak and B. Szafran, Spin polarization anisotropy in a narrow spin-

orbit-coupled nanowire quantum dot,

Physical Rev B 87, 205436 (2013),
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1 MOTIVATION AND CONTEXT OF THE THESIS

and manuscript that is under review at the stage of preparation of the thesis:

M.1 M. P. Nowak and B. Szafran Spontaneous and resonant lifting of the spin

blockade in nanowire quantum dots,

arXiv:1303.0211 (2013).

The collection of articles is preceded by the introduction and summary of the

works.

1 Motivation and context of the thesis

During the last two decades signi�cant progress has been made in con�ning and iso-

lating single and few charge carriers in three dimensional potential cavities within a

semiconducting medium that are called quantum dots. This opened unprecedented

opportunity to study quantum phenomena at the nanoscale and to take a step to-

wards quantum information processing. Electrons trapped in quantum dots possess

a discrete energy spectrum [1] and such systems are often referred to as arti�cial

atoms. Coupled quantum dots � where the electron wavefunction forms extended

orbitals � are called arti�cial molecules.

The ability to control single carries opens a possibility for quantum computa-

tion that utilizes a new class of algorithms [2, 3] that take advantage of quantum

parallelism. Spin of the electron con�ned in a quantum dot is considered as a good

candidate [4] for a bit of quantum information � qubit � due to its weak coupling

to the environment which increases the coherence time. For realization of quantum

algorithms single and two-qubit gates are required. While the latter can be real-

ized relatively simple � by controlling the exchange coupling between the spins [5]

� the control of single spin raises more di�culties. First demonstration of single

electron spin rotation employed Rabi resonances induced by oscillating magnetic

�eld [6]. This method however cannot be used for the creation of scalable devices

as the electrode used for the creation of a local AC magnetic �eld is of considerable

size. For practical implementation of quantum gates electrical control of electron

spin would be preferable. This is made possible by spin-orbit coupling. Spin-orbit

interaction is an e�ect of relativistic origin where in the electrons reference frame

the external electric �eld results in an e�ective magnetic �eld that depends on the

electron momentum and a�ects the electrons spin. In semiconductor nanostructures
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2 SUMMARY OF THE ARTICLES

there are two possible sources of the spin-orbit interaction. First of them is Rashba

[7] spin-orbit coupling which arises from the external electric �elds in the structure.

The second is Dresselhaus [8] spin-orbit interaction which results from the inversion

asymmetry of the crystal structure in zincblende semiconductors. The strength of

the spin-orbit interaction depends on the geometry of the device, and can be con-

trolled by the strength of the external electric [9] or magnetic �elds [10]. In recent

years a great attention has been paid to spin-orbit coupling in quantum dots which

resulted in measurements of i.e. spin precession in an e�ective magnetic �eld [11],

avoided crossings in the energy spectra [12, 13], their dependence on the orientation

of the external magnetic �eld [14] and �rst demonstration of coherent electrical spin

control [15]. On the other hand spin-orbit interaction leads to coupling of the spin

with the environment through orbital degrees of freedom which results in spin deco-

herence and relaxation [16, 17] and lifts the spin polarization in external magnetic

�eld limiting the ability to store information in the spin degree of freedom.

The present thesis is devoted to spin-orbit interaction e�ects in quantum dots and

its application to the control of the electron spin in arti�cial atoms and molecules.

The present work describes e�ects of spin-orbit interaction in lateral structures

and explains recent experimental results on self-organized quantum dots and gated

nanowires.

2 Summary of the articles

2.1 Article A.1, Coupling of bonding and antibonding electron

orbitals in double quantum dots by spin-orbit interaction

The �rst experimental demonstration of the control of a single [6] and a pair [5] of

spins in a solid state exploited planar quantum dots. These structures are created

by tailoring of the con�nement potential of the two dimensional electron gas in a

doped heterostructure. In article [A.1] we describe e�ects of spin-orbit interaction

in lateral few-electron coupled quantum dots.

To study the two-dimensional quantum dots we developed a computational

scheme in which the single electron spin-orbitals are obtained in a basis consist-

ing of Gaussian functions distributed on a square mesh. This approach is applicable

to systems without any symmetry and takes into account Rashba and Dresselhaus
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2 SUMMARY OF THE ARTICLES

spin-orbit interactions. We applied the con�guration interaction scheme to obtain

the solution for two- and three-electron in a numerically exact manner.

We describe experimentally measurable [18] consequences of spin-orbit interac-

tion on the optical absorption spectra in a microwave regime. We �nd that spin-orbit

coupling results in a mixed character of the states in the single-electron regime that

posses bonding and antibonding components. For odd-number of electrons this

results in opening avoided crossings between the states of opposite parity and spin

visible in the absorption spectra. For the two-electron system the optical transitions

are possible only in the presence of spin-orbit coupling that lifts the spin-polarization

of the states and opens singlet-triplet anticrossing in the lowest part of the energy

spectra.

2.2 Article A.2, Time-dependent con�guration-interaction sim-

ulations of spin swap in spin-orbit-coupled double quan-

tum dots

Laterally coupled quantum dots have been used [5] for for realization of two-qubit

quantum gates that realize SWAP and SQUARE ROOT OF SWAP operations that

are based on spin exchange [19] between the two electrons con�ned in adjacent

coupled dots. Without spin-orbit coupling the process is described by isotropic

Heisenberg Hamiltonian where the spin exchange is controlled by the strength of

the tunnel coupling [20]. Spin-orbit interaction is known to introduce anisotropic

corrections [21] to the spin exchange that results in a dependence of the process

on the initial direction of the spin polarization and limits the �delity of the SWAP

operation. The previous works discussed ways to minimize the anisotropy [22, 23] or

to utilize it for the construction of quantum gates [24, 25]. Recent work [26] showed

that in zero magnetic �eld the anisotropy vanishes but only for a speci�c choice of

the spin basis. In regard of the ongoing discussion in the work [A.2] we perform a

numerical experiment to study the spin swap process as it takes place in time under

the presence of spin-orbit interaction.

We adopt a calculation scheme of [A.1] to obtain eigenstates of coupled quan-

tum dots and used them to prepare the initial state for time evolution such that

the two electrons are in opposite spin con�guration and are localized in adjacent

dots. We present that for neglected Coulomb interaction the spin exchange involves

7



2 SUMMARY OF THE ARTICLES

tunneling of spin-opposite electrons between the dots which is accompanied by the

precession of their spins in the spin-orbit e�ective magnetic �eld. This results in an

appearance of additional spin components that depend on the initial spin polariza-

tion direction even without the magnetic �eld. The Coulomb interaction blocks the

electron motion but the tunneling of the spin densities accompanied by spin preces-

sion is still observed. We �nd that the Coulomb interaction results in the generation

of spin components in the direction of the spin-orbit �eld which are maximal at the

half-time of the spin SWAP � altering the SQUARE ROOT OF SWAP operation.

Moreover we present a way to restore the isotropy of the exchange process by proper

choice of the double dot orientation with respect to crystal lattice due to cancelation

of the e�ective Rashba and Dresselhaus �elds.

2.3 Article A.3, Singlet-triplet avoided crossings and e�ective

g-factor versus spatial orientation of spin-orbit-coupled

quantum dots

The orientation of the lateral quantum dots with respect to the crystal axes is de�ned

at the stage of fabrication of the device [27]. In the work [A.3] we demonstrate that in

the presence of both Rashba and Dresselhaus coupling the energy splitting between

the spin opposite states depends on the orientation of the dot. We explain that in the

presence of spin-orbit coupling the strength of the Zeeman interaction that polarizes

the spins depends on the extension of the charge density in the (001) plane provided

that the length of the dot is comparable with the spin-orbit length (that is inversely

proportional to the coupling strength). This results in changes of the e�ective g-

factor calculated from the spin splittings. If the strength ratio of the Rashba and

Dresselhaus coupling is detuned from 1 the dependence becomes weaker. The change

of spin polarization results in changes of the width of the avoided crossing between

singlet and triplet which is observed in the lowest part of the two-electron energy

spectrum.
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2 SUMMARY OF THE ARTICLES

2.4 Article A.4, Spin-orbit coupling e�ects in two-dimensional

circular quantum rings: Elliptical deformation of con-

�ned electron density

Special case of quantum dots are the circular structures with removed center that

form quantum rings. Closed quantum rings have been studied in the context of

persistent currents [28] and magnetization [29, 30, 31] in an external magnetic �eld.

Previous studies on spin-orbit coupled quantum rings focused on the one-dimensional

approximation of the structure [32]. Recent study [33] showed that spin-orbit in-

teraction leads to breaking of the rotational symmetry of the charge density in the

quantum ring. We employ con�guration interaction calculations on a Gaussian mesh

to describe a realistic quantum ring with �nite width channels. We present that the

one-dimensional approximation results in several arti�cial results and �nd that in

the presence of both Rashba and Dresselhaus spin-orbit coupling rotational symme-

try of the charge density is broken but only in the presence of external magnetic �eld

or in the presence of both couplings with unequal strengths. We �nd that even for

radically reduced channel width the exact results do not tend to the ones obtained

in the one-dimensional approximation [33].

Moreover we show that the deformation of the charge density is increased by the

electron-electron repulsion in the two electron regime. The breaking of the rotational

symmetry of the charge density by the spin-orbit coupling corresponds to changes in

experimentally accessible quantities such as the chemical potential of the ring and

the magnetization that resembles the dependencies known for rings with defects [34].

2.5 Article A.5, Fano resonances and electron spin trans-

port through a two-dimensional spin-orbit-coupled quan-

tum ring

Open quantum rings allow for the realization of two-path interferometers where the

phenomena related to phase change in the vector potential of the external magnetic

�eld (Aharonov-Bohm e�ect [35]) or in the spin-orbit �eld (Aharonov-Casher e�ect

[36]) results in modi�cation of the conductance. Moreover the spin-orbit-coupled

rings are considered for performing controlled rotations of transported electron spin

[37]. The work [A.5] studies electron transport through the quantum ring in the

9



2 SUMMARY OF THE ARTICLES

presence of Rashba spin-orbit coupling that results from the electric �eld present

solely in the ring area. This approach allows for well de�ned spins in the leads and

is realized by the addition of an electrode above the ring [38].

We developed a computational scheme that allows for the solution of the electron

transport problem through a quantum ring with two-dimensional channels by the

solution of time-independent Schrödinger equation with boundary conditions that

assume the electron to enter from one of the leads. We �nd that in contrary to

the one-dimensional studies [37] that in the presence of spin-orbit interaction Fano

resonances appear in the conductance of the ring. The resonances occurs for Fermi

energy that matches the energy of resonance states localized in the ring � whose

wavefunctions vanish in the leads � and appear due to the breaking of the symmetry

of the localized states by the spin-orbit coupling. We �nd that in the resonances the

spin polarization of transported electron is altered which is due to the coupling to

the spin of the resonance states. We demonstrate that the observed Fano resonances

are the narrowest when the spin-orbit coupling strength is tuned to the maxima of

the Aharonov-Casher oscillations. When the strength is detuned from the maxima

the resonances become broader and the spin polarization at the output of the ring

strongly depends on the electron Fermi energy which was not the case in the previous

studies [37].

2.6 Article A.6, Tuning of the spin-orbit interaction in a

quantum dot by an in-plane magnetic �eld

In 2010 the �rst transport spectroscopy measurement of a single self-organized quan-

tum dot was reported [14]. Self-organized quantum dots are formed in the Stranski-

Krastanov growth and are known for an almost a decade. The previous studies how-

ever were limited to the optical spectroscopy that were performed on ensembles of

this objects. The study of Ref. [14] revealed broad anticrossings in the few-electron

energy spectra of a single quantum dot opened by spin-orbit interaction that is ex-

ceptionally strong in these structures due to their limited height (that increases the

strength of Dresselhaus coupling) and potential pro�le in the dot [39] that results in

strong built-in electric �elds (that increase the strength of Rashba coupling). The

measured anticrossings [14] changed their width as the orientation of the external

magnetic �eld was varied. The experimental work concluded that they are due to

10



2 SUMMARY OF THE ARTICLES

Rashba coupling but did not provide any further explanation. Article [A.6] is the

�rst theoretical description of a spin-orbit coupled three-dimensional quantum dot

in a single and two-electron regime and provides a theoretical explanation of the

experimental �ndings of Ref. [14].

For studies performed in work [A.6] a new computational scheme was developed

that allowed for the inclusion of the full Rashba and Dresselhaus Hamiltonians into

a three dimensional calculation in an e�cient way. Two-electron eigenstates are

obtained using a con�guration interaction scheme where the electron-electron inter-

action matrix elements are calculated through the solution of the Poisson equation

in the quantum dot.

In one-electron energy spectra we �nd avoided crossings opened separately by

Rashba and Dresselhaus couplings whose width changes with the orientation of the

in-plane magnetic �eld. We explain that the width of the anticrossing depends on

the mixing ration between the states of opposite spin and parity and that due to

the di�erent form of the Rashba and Dresselhaus Hamiltonians this mixing vanishes

for di�erent orientation of the magnetic �eld. Under the presence of both couplings

the magnetic �eld orientation for which the anticrossing is the narrowest depends on

the relative strength of Rashba and Dresselhaus couplings. We compared results of

our calculation in the two electron regime with the experimental data and explained

that the results indicate the presence of Dresselhaus coupling in the structure. Fur-

thermore we derive analytical formula which allows for the calculation of the relative

strength of the spin-orbit couplings from the experimentally accessible data.

2.7 Article A.7, Resonant harmonic generation and collective

spin rotations in electrically driven quantum dots

For the realization of a complete set of quantum gates the implementation of sin-

gle qubit quantum gates that require single spin rotations is necessary. Electrical

spin rotations are performed by electric dipole spin resonance which relies on transi-

tions between spin states induced by oscillating electric �eld mediated by spin-orbit

coupling when the oscillation frequency matches the Larmor frequency in weak ex-

ternal magnetic �eld [6]. A lot attention was paid [40, 41, 42, 43, 44, 45] to InAs

and InSb nanowire quantum dots that allow for e�cient electrical control of electron

spin due the strong spin-orbit interaction in this systems [12, 13]. The work [40]
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2 SUMMARY OF THE ARTICLES

measured maps of the current in function of the magnetic �eld and electric �eld

frequency that revealed central resonance line due to transition from spin-parallel

triplet states to degenerate spin-antiparallel state. Recent experiment [42] presented

detailed spectroscopy of the electric dipole spin resonance spectrum revealing the

additional resonance line at the fractional frequency and the splitting of the central

line. We developed a computational scheme that allowed for simulation of electric

dipole spin resonance in a two-electron nanowire arti�cial molecule for the explana-

tion of this observation and to study the impact of the electron-electron interaction

on the spin rotations.

The calculations are based on a quasi-one-dimensional model of the nanowire

with the exact inclusion of the Coulomb interaction. The simulation reveals that

for non-zero interdot coupling the exchange interaction results in the splitting of

the central resonance line which is accompanied by the collective rotation of the

spins of both electrons. We also �nd that in the fourier transform of the driven

electron momentum there are harmonics present of the driving frequency. When

one of the harmonics matches the resonant frequency a transition appears which

is the origin of the experimentally resolved resonances at the half frequency [42].

The fractional resonances appear only if the exchange coupling between electrons

is nonzero, i.e., they are accompanied by the splitting of the central resonance line.

Moreover we �nd that the fractional transitions appear also in a single-electron

regime also without the spin-orbit coupling � the resonant generation of harmonic

frequency is an intrinsic propriety of an electrically driven electron.

2.8 Article A.8, Spin polarization anisotropy in a narrow spin-

orbit-coupled nanowire quantum dot

The electric dipole spin resonance experiments measure the main resonances at the

frequency that corresponds to the energy separation due to Zeeman splitting in an

external magnetic �eld. In experiments [41, 42] this allowed for measurement of the

e�ective Landè factor for di�erent in-plane orientation of the magnetic �eld. The

measurements revealed strong anisotropy of the e�ective g-factor. In the work [A.8]

we study e�ects of anisotropic spin polarization in nanowire quantum dots in the

context of the experimental �ndings.

We solve the three dimensional Schrödinger equation for single and two-electrons

12
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con�ned in a cylindrical quantum dot in the presence of Rashba coupling. We �nd

that the degree of spin polarization of the states depends on the orientation of the

external magnetic �eld. Surprisingly we �nd that the spin polarization becomes

almost complete for decreasing radius of the wire. We present an analytical solution

for the phenomena in the one-dimensional limit where we present analytical forms

of the spin-orbitals that allows us to explain the changes of the e�ective g-factor. In

the two-electron regime we perform con�guration interaction calculation and relate

our results to the experimental �ndings [41, 42]. We �nd that the form of the g-

factor dependence on the magnetic �eld orientation matches the one obtained in

the experiment. Moreover calculated width of the avoided crossing between the

energy levels of the singlet and triplet states and its dependence on the magnetic

�eld orientation agrees with the �ndings of Ref. [42].

2.9 Manuscript M.1, Spontaneous and resonant lifting of the

spin blockade in nanowire quantum dots

Observation of the electric dipole spin resonance [40, 41, 42, 43, 44, 45] relies on

the measurement of the current increase associated with the lifting of the Pauli

blockade in the two electron coupled quantum dots. The single electron current is

blocked when the two electrons initialize in spin parallel con�guration forming a

triplet state. Spin rotation drives the system into a S = 0 state which relaxes to the

singlet ground state (with double occupancy of a single dot), which is followed by

the escape of one of the electrons to the drain electrode. However, in the presence

of spin-orbit coupling, phonon mediated spin-relaxation occurs [17, 46, 47] as a

concurrent process to the electric dipole spin resonance, lifting of the blockade also

from spin parallel states. So far the latter process has been considered in the context

of the leakage current [48, 49]. In work [M.1] we present results of our simulation

that describes the time dependent process of electric dipole spin resonance along

with phonon mediated relaxation in the presence of spin-orbit coupling.

We �nd that the spin-nonconserving relaxation occurs provided the energy sepa-

ration between initial and �nal states for the relaxation is small enough. This leads

to spontaneous lifting of the blockade from one of the Zeeman split triplets. The

only remaining blocked state is the spin triplet with spins polarized antiparallel to

the magnetic �eld and in a weak magnetic �eld the resonances are observed solely

13
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from this state. When the external magnetic �eld is increased the spin positive

triplet becomes the ground state which results in the restoration of the blockade

from this state. This results in the appearance of an additional resonance which is

related to the spin rotation accompanied by charge recon�guration. We identify the

latter resonance in the recent experimental results [44].
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We perform a systematic exact diagonalization study of spin-orbit coupling effects for stationary few-
electron states confined in quasi-two-dimensional double quantum dots. We describe the spin-orbit-interaction
induced coupling between bonding and antibonding orbitals and its consequences for magneto-optical absorp-
tion spectrum. The spin-orbit coupling for odd electron numbers �one, three� opens avoided crossings between
low energy excited levels of opposite spin orientation and opposite spatial parity. For two electrons the
spin-orbit coupling allows for low-energy optical transitions that are otherwise forbidden by spin and parity
selection rules. We demonstrate that the energies of optical transitions can be significantly increased by an
in-plane electric field but only for odd electron numbers. Occupation of single-electron orbitals and effects of
spin-orbit coupling on electron distribution between the dots are also discussed.
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I. INTRODUCTION

In a pair of quantum dots1–4 defined in semiconducting
medium the charge carriers form extended wave functions
when their tunneling through the interdot barrier becomes
effective enough. In vertically stacked quantum dots the ex-
tended electron and hole orbitals are probed by photolumi-
nescence experiments in external electric field.4 The electron
single-dot orbitals hybridize to bonding ground states similar
to the ones found in natural covalent molecules. Recent
studies5 indicated that the hole in artificial molecules of self-
assembled quantum dots behaves in a different manner form-
ing an antibonding ground-state orbital. This peculiar behav-
ior results5 of the spin-orbit �SO� coupling-induced mixing
of light and heavy hole states.

In the present paper we study the mixing of bonding and
antibonding electron orbitals that is induced by SO interac-
tion in planar systems of laterally coupled quantum dots. The
coupling between spatial and spin electron degrees of free-
dom results from inversion asymmetry of the structure6

and/or the crystal lattice.7 This asymmetry enters into the
two-dimensional SO Hamiltonian which does not conserve
the spatial parity and couples the electron spin-up bonding
orbitals with spin-down antibonding orbitals. In order to in-
dicate experimentally accessible consequences of this cou-
pling we consider optical absorption spectra in the external
magnetic field for up to three confined electrons. In parabolic
quantum dots the spin-orbit coupling introduces a distinct
dependence of the far infrared magneto-optical absorption
spectra on the number of confined electrons.8 We find that
the SO induced modification to the absorption spectra of
double dot are qualitatively different for even and odd elec-
tron numbers.

Laterally coupled quantum dots9,10 are considered candi-
dates for realization of a quantum gate working on electron
spins3 since the height/width of the interdot barrier can be
tuned by external voltages which is essential for the control
of the spin exchange between the electrons confined in adja-
cent dots. The idea of the spin exchange motivated a number

of theoretical investigations on the properties of electron sys-
tems in laterally coupled quantum dots.1,2,11–18

The SO interaction is one of the issues that are investi-
gated in the context of spin-based quantum information
processing.16–22,25–33 The SO coupling allows for spin ma-
nipulation by the spatial electron motion.30–33 Moreover, it
leads to the spin relaxation18–22 mediated by phonons, lead-
ing to information decay and decoherence. Singlet-triplet in-
duced avoided crossing of two-electron energy levels were
observed in electron-transport spectroscopies for gated InAs
nanowire quantum dots23 as well as for double quantum
dots.24 The exchange interaction between electrons confined
in separate dots was found to contain an anisotropic compo-
nent originating from the SO coupling,25 which initially mo-
tivated a quest for spin processing procedures26,27 minimiz-
ing its effects. Later on, proposals of using the asymmetry of
the exchange interaction for construction of universal quan-
tum gates that could work without single spin operations28,29

were formulated. Recently, a theoretical study supported by
exact diagonalization results argued that16 the anisotropy of
the exchange interaction is in fact absent in zero magnetic
field. The SO coupled double quantum dots were so far stud-
ied by the exact diagonalization in Ref. 34, which provides a
detailed analysis of single-electron states and in Refs. 16 and
35 which deal with the electron pair in the context of the
exchange interaction.

II. THEORY

We consider an effective mass single-electron Hamil-
tonian of the form,

h = � p2

2m�
+ W�r��1 +

1

2
g�BB�z + HSIA + HBIA, �1�

where p=�k=−i��+eA, 1 is the identity matrix, W�r�
stands for the potential, HSIA and HBIA introduce Rashba6

�structure inversion asymmetry� and Dresselhaus7 �bulk in-
version asymmetry� spin-orbit interactions. The vector po-
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tential is taken in the symmetric gauge A= B
2 �−y ,x ,0�. The

Rashba and Dresselhaus SO interactions have the form

HSIA = � � W · �� � k� , �2�

and

HBIA = ���xkx�kz
2 − ky

2� + �yky�kx
2 − kz

2� + �zkz�ky
2 − kx

2�� ,

�3�

respectively. In Eqs. �2� and �3� � and � are bulk SO cou-
pling constants, �’s are Pauli matrices and x, y, z axes are
oriented parallel to �100�, �010�, and �001� �growth� crystal
directions, respectively.

We assume that the confinement potential forming the
quantum dot is separable into an in-plane Vc�x ,y� and a
growth direction Vz�z� components so that the potential ap-
pearing in the Hamiltonian �1� is

W�r� = Vc�x,y� + Vz�z� + �e�F · r , �4�

where F is the external electric field vector �below we al-
ways take Fy =0�. In the following we adopt a two-
dimensional approximation assuming that the electrons oc-
cupy a frozen lowest-energy state of quantization in the
growth direction. The two-dimensional SO terms are ob-
tained by averaging HSIA and HBIA over the wave function
describing the electron localization in the growth direction.
The two-dimensional Rashba terms are usually35 separated
into a diagonal

HSIA
diag = ��z� �W

�y
kx −

�W

�x
ky	

=��z�� �Vc

�y
	kx − � �Vc

�x
+ �e�Fx	ky� , �5�

and linear

HSIA
lin = �
 �W

�z
���xky − �ykx� , �6�

parts. In this formula the average gradient of the potential
calculated for the wave function in the growth direction can
be attributed to an effective z component of the electric field
Fz= 1

�e� �
�W
�z . The two-dimensional Dresselhaus SO interaction

contains the linear

HBIA
lin = ��kz

2��xkx − �yky� , �7�

and the cubic

HBIA
cub = ���ykykx

2 − �xkxky
2� �8�

terms. We assume that the quantum dot is made of
In0.5Ga0.5As alloy for which we adopt the SO coupling con-
stants �=0.572 nm2 �after Ref. 36� and �=32.2 meV nm3

�after Ref. 37�. The other material parameters are taken as
arithmetic average38 of InAs and GaAs, i.e., we use the elec-
tron effective mass m�=0.0465m0, Landé factor g=−8.97
and dielectric constant �=13.55. The considered large value
of the g factor is in the order of the one found for in experi-
mental samples23,24 in which the SO coupling effects were
studied.

For the electron wave function in the growth direction
identified with the ground-state of an infinite rectangular po-
tential well of height d one obtains the two-dimensional lin-
ear Dresselhaus constant �2D=��kz

2=� �2

d2 �see Eq. �7��. In
the bulk of our calculations we assume a minimal but still
realistic value of d=5.42 nm, for which �2D

=10.8 meV nm.
The in-plane confinement potential is taken in form

Vc�x,y� = −
V0

�1 + � x2

Rx
2	���1 + � y2

Ry
2	��

+
Vb

�1 + � x2

Rb
2	���1 + � y2

Ry
2	�� , �9�

where V0=50 meV is the depth of the dots and Vb is the
height of the interdot barrier. We assume �=10 for which the
potential profile has a form of a nearly rectangular potential
well, where 2Rx=90 nm and 2Ry =40 nm determine the size
of the double dot in x and y directions respectively and
2Rb=10 nm is the thickness of the interdot barrier. We con-
sider two values of the barrier height Vb=10 meV—for the
double-dot potential and Vb=0—for a single elongated dot.
The potential Vc is displayed in Fig. 1 for both the single and
double dot. The single elongated dot is discussed here as a
limit of the strong interdot tunnel coupling.

Our calculation deals with a single or double quantum dot
that is two-dimensional and strongly anisotropic, with the
length to width ratio of about 2:1. Such a quantum dot can be
defined by an electrical gating of a quantum well for a proper
shape of the gate. The profile of the confinement potential for
a circular gate was discussed in Ref. 39. Double flat InGaAs
quantum dots that are laterally coupled are also produced by
etching techniques.40 In these40 structures the dots nearly
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FIG. 1. �Color online� The shades of gray �blue online� show the
in-plane potential of a single dot �Vb=0—left column of plots� and
of a double dot �Vb=10 meV—central and right columns�. In the
right column of plots an in-plane electric field of Fx=0.5 kV /cm is
included. Inside the light �darker� blue area the potential falls below
−5 meV �−45 meV�. The contours indicate the charge density for a
single �top row�, two electrons �middle row� and three electrons
�lowest row of plots� for B=0.

M. P. NOWAK AND B. SZAFRAN PHYSICAL REVIEW B 81, 235311 �2010�

235311-2



touch one another and the 2:1 ratio of the lengths is pre-
served.

The singlet/triplet avoided crossings that are due to SO
coupling were observed in the charging spectra of InAs
quantum-wire-based structures, both a single23 and double24

dots. These quantum wires23,24 are three-dimensional objects
of a circular profile of confinement potential. The confine-
ment along the wire is introduced23,24 by electrical gating and
the magnetic field is applied perpendicular to the axis of the
wire. The common point of the geometry of these
structures23,24 and the present model is the distinct anisotropy
of the structure within the plane perpendicular to the external
magnetic field. For the single dot23 the length of the structure
along the wire is 180 nm as compared to the wire diameter of
50 nm. For the double dot24 the length and diameter are 220
and 100 nm, respectively. The other common point of the
considered model and the quantum-wire dots23,24 is the
strong Zeeman effect due to the large vale of the g factor.

The single-electron eigenfunctions are found by diagonal-
ization of the two-dimensional version of Hamiltonian �1� in
a basis of multicenter Gaussian functions41 with embedded
gauge invariance

	n = �
ks

cks
n 
s exp�−

�r − Rk�2

2a2 +
ieB

2�
�xYk − yXk�	 ,

�10�

where summation over k runs over centers of Gaussian Rk
= �Xk ,Yk�, s= ↑ ,↓ and 
s are eigenstates of Pauli �z matrix.
The centers Rk are distributed on a rectangular mesh of 25
�11 points spaced by �x=�y=5.2 nm. The variationally
optimal basis function parameter a=4.7 nm is used in the
calculations.

The eigenproblem of N-electron Hamiltonian

H = �
i

N

hi + �
i=1,j�i

N
e2

4��0�rij
�11�

is solved using the configuration-interaction approach with a
basis constructed of Slater determinants built of single-
electron eigenfunctions �Eq. �10�� of SO-coupled Hamil-
tonian. Convergence of the energies with a precision better
than 1 �eV is usually reached for inclusion of thirty one-
electron eigenstates.

The confinement potential �Eq. �9�� is symmetric with re-
spect to the origin. In the present work the asymmetry effects
are introduced by the in-plane electric field Fx. For Fx=0 and
without SO coupling the stationary states possess a definite
spatial parity with respect to point inversion P	n�−r�
= 	n�r�, where P is the inversion operator. The eigenvalue
+1 corresponds to even-parity states and the eigenvalue −1
to the odd-parity states. When SO is introduced the spatial
parity eigenvalue is no longer a good quantum number even
for Fx=0. For symmetric systems the SO coupled Hamilto-
nians commute with the operator P�z, which implies that the
spin-up and spin-down components still possess definite but
opposite spatial parities. We refer to P�z as the s-parity op-
erator. Eigenstates of this operator with eigenvalue +1�−1�
are referred to as even �odd� s-parity states or for brevity

s-even �s-odd� states. The even s-parity states have even-
parity spin-up component and odd-parity spin-down compo-
nent.

We evaluate the optical absorption spectrum using the en-
ergies of stationary states and transition probabilities from
state k to l that is proportional to the square of the dipole
matrix element

Ikl = ��k��
j=1

N

�xj  iyj���l , �12�

where �k is the N-electron wave function for kth Hamil-
tonian �11� eigenstate and the signs  correspond to opposite
circular polarization of the exciting light. The optical transi-
tions conserve the electron spin and invert the spatial parity
when it is a well-defined quantity. When the SO coupling is
introduced the optical transitions can only occur between
states of opposite s-parity.

III. RESULTS

A. Single electron

The single-electron spectrum for a single elongated dot
and for the double dot is presented in Fig. 2. For B=0 the
ground state and the first excited state are Kramers doublets.
In each doublet we find one state of the odd s-parity and the
other of the even s-parity. At B=0 the electron in the ground-
state �first-excite-state� doublet occupies predominantly a
bonding �antibonding� orbital. With the solid �dashed� lines
we plotted the even �odd� s-parity energy levels. Black lines
show the results without SO coupling. The dark gray �blue
online� lines correspond to the case of SO coupling without
the linear Rashba term �HSIA

lin �, i.e., for Fz=0. The light gray
�red online� curves in Fig. 2�a� correspond to Fz
=188.8 kV /cm, for which the linear two-dimensional
Rashba constant is as large as the linear two-dimensional
Dresselhaus one. Beyond increased width of the avoided
crossing no qualitative difference in the results obtained for
these two values of Fz is found. Therefore, below we assume
Fz=0 unless stated otherwise.

For illustration of the double-dot wave functions we as-
sumed a presence of a residual magnetic field B=10 �T
which lifts the doublet degeneracy and we chose the states of
the ground and excited doublets that correspond to �sz�0.
With the blue lines in Fig. 3 we plotted the spinor compo-
nents of the even s-parity ground state which is bonding in
its spin-up component with or without SO coupling. Its an-
tibonding spin-down component appears when the SO cou-
pling is introduced �Fig. 3�c��. The red lines in Fig. 3 corre-
spond to the odd s-parity state of the excited doublet which is
antibonding in the spin-up component. The SO coupling
adds to this state a bonding spin-down component.

In Fig. 2 one observes an avoided crossing of two excited
energy levels of the odd s-parity stemming of both the
ground and the exited doublets. Without the SO coupling the
energy level that goes up in the energy with growing mag-
netic field corresponds to the spin-down bonding orbital, and
the one that goes down—to the spin-up antibonding orbital.
The avoided crossing opened by the SO interaction is accom-
panied by spin and spatial parity mixing.
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For the single electron in ideally symmetric pair of dots
�Fx=0� there is a direct correspondence between the SO-
coupling-induced mixing of both the spin states and the oc-
cupation of molecular orbitals of opposite spatial parity. The
occupation of the even-parity orbitals �oc�e�� is calculated as
the norm of this component of the spinor that corresponds to
the even-parity state. Then the average value of the z com-
ponent of the electron spin is �sz=��oc�e�− 1

2 � for the even
s-parity and �sz=�� 1

2 −oc�e�� for the odd s-parity states. Oc-
cupation of the even-parity orbitals and �sz is for the double
dot displayed in Fig. 4 as function of the magnetic field. The
ground state at higher field becomes a pure bonding spin-up
orbital. We notice that the values corresponding to the two
odd s-parity energy levels interchange near 2 T which is
related to the energy level anticrossing presented in Fig. 2�b�.
At the center of the avoided crossing these two energy levels
correspond to �sz=0 and bonding and antibonding orbitals
are equally occupied.

The discussed anticrossing of the odd s-parity energy lev-
els leaves a clear signature on the optical absorption spec-

trum. The energy and probability of excitation from the
ground state are displayed in Fig. 5. The ground state has the
even s-parity hence the absorption is only allowed to the odd
s-parity final state. The ground-state is nearly spin-up polar-
ized �Fig. 4� and since electron spin is left unchanged during
an optical transition the absorption goes to the s-odd state
with spin-up orientation. When the avoided crossing is
opened between the s-odd energy levels both of them possess
a nonzero spin-up component and the optical transitions to
both of them from the ground-state are allowed. Outside the
avoided crossing the absorption spectra with or without SO
coupling are similar.

The energy range in which the SO-induced avoided cross-
ing is observed in the absorption spectrum corresponds to
far-infrared or microwave radiation in which cyclotron reso-
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nance experiments are performed.43 One can increase the
energy of the avoided crossing twice by applying an electric
field of 0.5 kV/cm—see Fig. 6�b�. In the presence of the
electric field the electron in the ground-state is pushed to the
left dot by Fx�0 while the final state in the absorption pro-
cess is mainly localized in the right dot �see Fig. 3�b��. The
opposite shifts of the electron wave function in the initial and
final states are translated by the electric field into an in-
creased transition energy �see Fig. 6�a� for the energy split-
ting�. The obtained energy increase is accompanied by reduc-
tion of the SO-induced avoided crossing.

Figure 6�b� shows also that for nonzero F the absorption
probabilities vanish at higher B. The separation of the initial
and final states �Fig. 3�b�� by the electric field is enhanced
when the magnetic field is applied, since the latter increases
the localization of wave functions near the centers of the dots
lifting the interdot tunnel coupling. In consequence—the
ground state becomes totally localized in one dot and the

final state of the transition in the other. Vanishing overlap
between the initial and final state wave function implies van-
ishing transition probability as calculated by formula �12�.

In order to evaluate the importance of separate spin-orbit
coupling terms we calculated their contributions to the
single-electron ground state. For B=0 and Fx=0 and �Fz
=��kz2=�2D=10.8 meV nm �red curves in Fig. 2�a�� we
find that the expectations values of HSIA

lin , HBIA
lin , HBIA

cub , and
HSIA

diag are, −0.14 meV, −0.14 meV, 1 �eV, and
−0.01 �eV, respectively. At 4 T the corresponding values
are −0.19 meV, −0.03 meV, 0.13 �eV, and −6 �eV. At
high magnetic field the energy effects of the Dresselhaus
coupling are reduced in consistence with the recent study42

of parabolic quantum dots. This reduction is due to the Zee-
man effect42 which is for the considered material particularly
strong. For Fz=0 at 4 T �blue curve in Fig. 2�a�� one obtains
−27, 0, 0.01, and −6 �eV. For additionally switched off
Zeeman term the numbers are −230, 0, 3, and 6 �eV, re-
spectively. In fact, only the linear terms of SO interaction
introduce significant contributions to the results within the
considered range of magnetic field.

B. Electron pair

In the absence of the magnetic field and without SO cou-
pling the first excited state of the electron pair is spin triplet.
For B=0 we find that the first excited state is threefold de-
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coupled dots �b� �for the energy spectra see Fig. 2�. The area of the
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generate also with SO coupling present. This applies to both
the single elongated dot �Fig. 7�a�� and the double dot �Fig.
7�b��. Without SO coupling the magnetic field induces a
singlet-triplet ground-state transition near 1 T for the single
dot and near 0.4 T for the double dot. The crossing singlet
and triplet energy levels have the same odd s-parity and an
avoided crossing is opened between them when SO coupling
is introduced. The calculated width of the avoided crossing is
0.18 and 0.07 meV for the single and double dot, respec-
tively, which is within the order of the ones found in experi-
ments: 0.23 and 0.2 meV for the nanowire quantum dot23 and
for the double dot.24

For a symmetric system �Fx=0� the optical transition
from the ground-state can only go to the even s-parity eigen-
state. In the absence of the spin-orbit coupling in the consid-
ered energy range only the triplet with zero z component of
the spin �T0� has the required spatial parity to absorb pho-
tons. However, this absorption is excluded anyway on both
sides of the singlet-triplet ground-state transition. For B be-
low this transition the matrix element �Eq. �12�� vanishes due
to opposite symmetry of the spatial initial and final wave
functions with respect to the electron interchange. For B
above the singlet-triplet transition the ground-state �triplet
with sz=� denoted as T+� and T0 states have the same sym-
metry with respect to the electron interchange, but the z com-

ponents of the spin are different. Optical transitions between
the states corresponding to energy levels presented in Fig. 7
are only allowed by the SO coupling. The calculated absorp-
tion spectrum is shown in Fig. 8. For Fx=0 �Figs. 8�a� and
8�c�� the absorption probability grows with the magnetic
field after the singlet-triplet ground state avoided crossing.
Then, the transition corresponds to T+→T0 excitation in
terms of states without SO coupling. When the electric field
Fx is switched on �Figs. 8�b� and 8�d�� the parity selection
rules no longer apply and we notice appearance of also
S↔T+ and S→T− transitions. The probabilities for the dis-
cussed transitions—which are all forbidden in the absence of
SO coupling—remain very small �less than 0.5%� as com-
pared to the ones found for the single and three electrons.

For two electrons the role of the electric field for the
low-energy optical absorption is different from the single-
electron case. For N=1 the electric field distinctly shifts the
energy of the absorption lines �Fig. 6�. For N=2 the energy
shift is very weak, only the transition probabilities are af-
fected. For the single electron the energy shifts resulted from
spatial electron-charge displacements of the initial and final
states induced by the electric field. For two electrons these
shifts are hampered �see Fig. 1� since the charge shift implies
appearance of a double occupation of one of the dots. Figure
9 shows the charge localized in the left dot in function of the
electric field. For N=1 �and N=3� the dependence of the
charge on Fx is the strongest at zero electric field, while for
N=2 we find the weakest dependence.

For B=0 we did not find any SO coupling influence on
the charge distribution as a function of the in-plane electric
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field. Nevertheless, such an effect is observed in the presence
of the external magnetic field—see Fig. 10. For B=0.4 T the
ground-state without SO coupling corresponds already to the
spin triplet, in which—due to the Pauli exclusion—
localization of both electrons in the same dot requires occu-
pation of an excited single-dot energy level. The charge of
the two-electron system for the triplet ground-state is even
more resistant to shifts by the electric field than for the sin-
glet state �compare Figs. 10�b� and 10�d��. For B=0.4 T the
ground state becomes singlet again near 0.4 kV/cm. The
electrons in the singlet state occupy more easily11 the dot
made deeper by the electric field which restores the singlet
ground state when Fx is applied. We notice �see the dashed
line in Fig. 10�d�� a jump in the occupation of the left dot at
the singlet-triplet transition. For B=0.6 T a similar effect is
observed only at higher Fx �the dashed line in Fig. 10�f��.
The SO coupling mixes the singlet and triplet states and we
notice that the electron charge in the left dot �blue lines in
Figs. 10�b�, 10�d�, and 10�f�� becomes a smooth function of
Fx. As a general rule, when the ground state without SO
coupling is singlet �triplet�—the SO coupling reduces �en-
hances� the occupation of the deeper dot.

At the singlet-triplet transition the SO coupling influences
also the probability of finding both the electrons in the same

dot �Fig. 11�. Without SO coupling the ground-state prob-
ability exhibits a rapid drop at the singlet-triplet transition
near 0.4 T. The spin-orbit coupling influences the double
occupation probability only for nonzero B.

In order to quantify the occupation of the single-electron
even- and odd-parity orbitals we first project the two-
electron eigenstates of operator �Eq. �11�� into the basis com-
posed of single-electron eigenfunctions obtained without SO
coupling �denoted as 	� in the following�. For a state � we
consider the projection in form

dkl
� =

1

2 �
i,j�i

Cij
� �	i�1�	 j�2� − 	i�2�	 j�1�� ,

�	k��1�	l��2� − 	k��2�	l��1� . �13�

An eigenfunction 	k� has a definite spatial parity and z com-
ponent of the spin associated with a spinor 
k which is the sz
eigenfunction of eigenvalue � /2 or −� /2 �
k= �↑  or 
k
= �↓ �. Hence, the occupation of the spin-up even-parity
single-electron wave functions can be calculated as
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oc�e↑� = �
k,l�k

�dkl�2��p�k,+ ��s�k,↑� + �p�l,+ ��s�l,↑�� ,

�14�

where

�p�k, � =

1 � �	k��r���	k��− r�dr

2
�15�

and

�s�k,↑� = �
k�↑ . �16�

The occupation of the spin-up odd-parity single-electron
states is determined by the formula

oc�o↑� = �
k,l�k

�dkl�2��p�k,− ��s�k,↑� + �p�l,− ��s�l,↑�� ,

�17�

with an obvious generalization for the spin-down compo-
nents. The results are displayed in Fig. 12. Without SO cou-
pling �i� below 0.4 T the ground state is even-parity singlet—
the electrons occupy mostly the even-parity states �ii� above
0.4 T the ground-state is odd-parity triplet—the spin-down
contributions are removed, one of the electrons occupy an
even-parity and the other an odd-parity orbital. The jump of
the occupations near 0.4 T that is observed in the results
without SO coupling is replaced by a smooth transition when
SO coupling is applied. The values obtained for orbital oc-
cupations in both large and zero B limits are similar.

Nonconservation of the spatial parity in the presence of
SO coupling for the two-electron states becomes evident
when one considers contributions of the two-electron basis
elements. The contributions of the elements in which both
electrons occupy orbitals of the same spatial parity are cal-
culated as

cee = �
k,l�k

�dkl�2�p�k,+ ��p�l,+ � , �18�

for the even-parity orbitals and

coo = �
k,l�k

�dkl�2�p�k,− ��p�l,− � , �19�

for the odd-parity orbitals. Contribution of the two-electron
basis elements in which the electrons occupy opposite pari-
ties is

coe+eo = �
k,l�k

�dkl�2��p�k,− ��p�l,+ � + �p�k,+ ��p�l,− �� .

�20�

The results are displayed in Fig. 13. Without SO coupling for
B�0.4 T the contribution of the basis elements in which the
electrons occupy opposite parity eigenstates is zero. In the
triplet ground state for B�0.4 T the electrons are bound to
occupy orbitals of opposite parities. When the SO is present
for B=0 there is a nearly 10% contribution of basis elements
in which the electrons occupy orbitals of opposite parities.
The coe+eo grows with the magnetic field, but it stays below
100% in the studied range of B. This result and the ones
presented above indicate that for two electrons the SO cou-
pling has a noticeable influence on the ground-state proper-
ties in contrast to the single-electron case.

C. Three electrons

For N=3 in the absence of SO coupling the magnetic field
leads to the ground-state spin-polarization transition near 3 T
in both the single �Fig. 14� and double �Fig. 15�a�� dots. For
symmetric dots this transition is associated with energy level
crossing even when SO coupling is introduced since the
ground states on both sides of the transition correspond to
opposite s-parities. The in-plane electric field opens an
avoided crossing at the ground-state spin-polarization transi-
tion �see Fig. 17�a��.
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For three electrons in a single dot without SO coupling
one observes �Fig. 14� crossings of three s-odd energy levels
near 2 T. For the double dot �Fig. 15�a�� the crossings appear
in more separated magnetic fields. The three crossing levels
have different z projections of the spin. Similarly as for N
=1 the SO coupling opens avoided crossing in the absorption
spectrum, but for N=3 three energy levels participate in this
avoided crossing instead of two. These avoided crossings are
accompanied by a smooth variation of the spin �Fig. 15�b��.

For the spin unpolarized ground-state �B�3 T� the
lowest-energy optical transition goes from the ground-state
to the odd s-parity states with �sz�� /2. Without SO cou-
pling and in terms of occupation of single-electron orbitals
we observe �Fig. 16� a transition of one of the electrons
occupying a bonding orbital to an occupied antibonding or-
bital. One finds a single bright line similar to the one found
for N=1. For B�3 T the principle line in the ground-state
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absorption spectrum disappears due to the ground-state spin
polarization.

The in-plane electric field increases the energy splitting
between the ground-state and the first excited state leading to
an increase of the energy absorbed at the optical transition
�Fig. 17�b��. The form of the avoided crossing is not affected
by the field—like in the single-electron case.

For the lowest-energy even s-parity state both occupation
of single-electron spin orbitals �Figs. 18�a� and 18�c�� and
contribution of three-electron basis elements of definite spa-
tial parity �Figs. 19�a� and 19�c�� are only weakly affected by
both the magnetic field and the spin-orbit coupling. The de-
pendence of the studied quantities on the magnetic field is
more spectacular for the lowest energy s-odd state �Figs.
18�b�, 18�d�, 19�b�, and 19�d��. Without SO coupling the
lowest-energy s-odd level corresponds to even parity only
between 1.9 and 2.8 T, hence the vanishing contribution of
the even-parity three-electron basis elements outside this B
interval. In the presence of SO coupling the contribution of
the even-parity basis elements extends over the entire studied
range of the magnetic field.

D. Results for a larger dot

The results obtained above for the double dot and for the
single elongated quantum dot for the energy and absorption
spectra are qualitatively similar. In fact the results stay quali-
tatively the same as long as the strong anisotropy of the
confinement potential is present. In order to illustrate this
fact we increased the size of the dot twice in both x and y
directions. The energy and absorption spectra for 2Rx
=180 nm and 2Ry =80 nm are displayed in Fig. 20 for one
�a–d� and two �e–h� electrons. In Figs. 20�a�, 20�b�, 20�e�,
and 20�f� we keep the same nearly square lateral profile of
the confinement potential, and in the rest of the plots we
made it smoother by replacing the exponent �=10 by �=3
in Eq. �9�. We can see that the energy and the magnetic fields
range changes, but the plots retain their character seen above
in Fig. 2, 5, 7, and 8.

IV. SUMMARY AND CONCLUSIONS

We have presented a systematic exact diagonalization
study of one, two and three-electron spin-orbit coupled sys-
tems in double quantum dots. We discussed the mixing of the
bonding and antibonding electron orbitals by the SO cou-
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pling. We investigated occupation of even- and odd-parity
orbitals, the energy and optical absorption spectra in crossed
electric and magnetic fields as well as the electron distribu-
tion.

For one and three electrons confined in a pair of identical
dots we found that the spin-orbit coupling only weakly af-
fects the ground-state properties. A strong mixing of bonding
and antibonding orbitals due to the spin-orbit coupling was
found in the lowest-energy excited states.

In contrast to the odd electron numbers, for two electrons
the spin-orbit interaction affects the properties of the ground
state since the spin polarization becomes a smooth transition
instead of an abrupt singlet-triplet transformation. On the
contrary, the spin polarization of the three electron system in
symmetric dots is not affected by the spin-orbit coupling
since the low- and high-spin ground-states correspond to op-
posite s-parities. For three electrons the SO coupling makes
the spin-polarization continuous only when the confinement
potential contains an in-plane asymmetry, e.g., introduced by
an electric field.

For odd electron numbers the spin-orbit-coupling-induced
mixing of spatial parities of the first excited state opens char-

acteristic avoided crossings in the optical absorption spec-
trum. An in-plane electric field shifts the initial and final
states of the optical transition to opposite dots. In conse-
quence it distinctly increases the energy of the optical tran-
sition at an expense of a reduced width of the avoided cross-
ing.

The low-energy optical absorption for two electrons is
only allowed by the SO coupling. For two electrons the in-
plane electric field lifts the spatial parity selection rules but
does not essentially perturb the energy of the optical transi-
tions.

ACKNOWLEDGMENTS

This work was supported by the “Krakow Interdiscipli-
nary PhD-Project in Nanoscience and Advanced Nanostruc-
tures” operated within the Foundation for Polish Science
MPD Programme co-financed by the EU European Regional
Development Fund. Calculations were performed in ACK–
CYFRONET–AGH on the RackServer Zeus.

1 X. Hu and S. Das Sarma, Phys. Rev. A 61, 062301 �2000�.
2 A. Harju, S. Siljamäki, and R. M. Nieminen, Phys. Rev. Lett. 88,

226804 �2002�.
3 G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59,

2070 �1999�.
4 H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M.

Bichler, G. Abstreiter, and J. J. Finley, Phys. Rev. Lett. 94,
057402 �2005�; E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V.
Pomonarev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L. Rei-
necke, and D. Gammon, Science 311, 636 �2006�; H. J. Kren-
ner, E. C. Clark, T. Nakaoka, M. Bichler, C. Scheurer, G. Ab-
streiter, and J. J. Finley, Phys. Rev. Lett. 97, 076403 �2006�.

5 J. I. Climente, M. Korkusiński, G. Goldoni, and P. Hawrylak,
Phys. Rev. B 78, 115323 �2008�; M. F. Doty, J. I. Climente, M.
Korkusiński, M. Scheibner, A. S. Bracker, P. Hawrylak, and D.
Gammon, Phys. Rev. Lett. 102, 047401 �2009�.

6 Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 �1984�.
7 G. Dresselhaus, Phys. Rev. 100, 580 �1955�.
8 P. Pietiläinen and T. Chakraborty, Phys. Rev. B 73, 155315

�2006�; T. Chakraborty and P. Pietiläinen, Phys. Rev. Lett. 95,
136603 �2005�.

9 J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van
Beveren, S. De Franceschi, L. M. K. Vandersypen, S. Tarucha,
and L. P. Kouwenhoven, Phys. Rev. B 67, 161308�R� �2003�; R.
Hanson, L. H. Willems van Beveren, I. T. Vink, J. M. Elzerman,
W. J. M. Naber, F. H. L. Koppens, L. P. Kouwenhoven, and L.
M. K. Vandersypen, Phys. Rev. Lett. 94, 196802 �2005�.

10 J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby,
M. D. Lukin, C. M. Markus, M. P. Hanson, and A. C. Gossards,
Science 309, 2180 �2005�.

11 B. Szafran, F. M. Peeters, and S. Bednarek, Phys. Rev. B 70,
205318 �2004�.

12 J. Pedersen, C. Flindt, N. A. Mortensen, and A.-P. Jauho, Phys.

Rev. B 76, 125323 �2007�.
13 A. L. Saraiva, M. J. Calderon, and B. Koiller, Phys. Rev. B 76,

233302 �2007�.
14 M. Stopa, A. Vidan, T. Hatano, S. Tarucha, and R. M. Wester-

velt, Physica E �Amsterdam� 34, 616 �2006�.
15 D. V. Melnikov, J.-P. Leburton, A. Taha, and N. Sobh, Phys. Rev.

B 74, 041309�R� �2006�.
16 F. Baruffa, P. Stano, and J. Fabian, Phys. Rev. Lett. 104, 126401

�2010�.
17 S. Gangadharaiah, J. Sun, and O. A. Starykh, Phys. Rev. Lett.

100, 156402 �2008�.
18 P. Stano and J. Fabian, Phys. Rev. Lett. 96, 186602 �2006�.
19 V. N. Golovach, A. Khaetskii, and D. Loss, Phys. Rev. B 77,

045328 �2008�.
20 K. Shen and M. W. Wu, Phys. Rev. B 76, 235313 �2007�.
21 T. Meunier, I. T. Vink, L. H. Willems van Beveren, K.-J. Tiel-

rooij, R. Hanson, F. H. L. Koppens, H. P. Tranitz, W. Wegsc-
heider, L. P. Kouwenhoven, and L. M. K. Vandersypen, Phys.
Rev. Lett. 98, 126601 �2007�.

22 J. I. Climente, A. Bertoni, G. Goldoni, M. Rontani, and E. Mo-
linari, Phys. Rev. B 75, 081303�R� �2007�.

23 C. Fasth, A. Fuhrer, L. Samuelson, V. N. Golovach, and D. Loss,
Phys. Rev. Lett. 98, 266801 �2007�.

24 A. Pfund, I. Shorubalko, K. Ensslin, and R. Leturcq, Phys. Rev.
B 76, 161308�R� 2007.

25 K. V. Kavokin, Phys. Rev. B 64, 075305 �2001�.
26 N. E. Bonesteel, D. Stepanenko, and D. P. DiVincenzo, Phys.

Rev. Lett. 87, 207901 �2001�.
27 G. Burkard and D. Loss, Phys. Rev. Lett. 88, 047903 �2002�.
28 L.-A. Wu and D. A. Lidar, Phys. Rev. A 66, 062314 �2002�.
29 D. Stepanenko and N. E. Bonesteel, Phys. Rev. Lett. 93, 140501

�2004�.
30 S. Debald and C. Emary, Phys. Rev. Lett. 94, 226803 �2005�.

COUPLING OF BONDING AND ANTIBONDING ELECTRON… PHYSICAL REVIEW B 81, 235311 �2010�

235311-11



31 C. Flindt, A. S. Sorensen, and K. Flensberg, Phys. Rev. Lett. 97,
240501 �2006�.

32 S. Bednarek and B. Szafran, Phys. Rev. Lett. 101, 216805
�2008�.

33 P. Földi, O. Kálmán, M. G. Benedict, and F. M. Peeters, Phys.
Rev. B 73, 155325 �2006�; Nano Lett. 8, 2556 �2008�.

34 P. Stano and J. Fabian, Phys. Rev. B 72, 155410 �2005�.
35 L. Meza-Montes, C. F. Destefani, and S. E. Ulloa, Phys. Rev. B

78, 205307 �2008�.
36 E. A. de Andrada e Silva, G. C. La Rocca, and F. Bassani, Phys.

Rev. B 55, 16293 �1997�.
37 S. Saikin, M. Shen, M. Cheng, and V. Privman, J. Appl. Phys.

94, 1769 �2003�.

38 M. Willatzen and L. C. Lew Yan Voon, J. Phys.: Condens. Matter
20, 345216 �2008�.

39 S. Bednarek, B. Szafran, K. Lis, and J. Adamowski, Phys. Rev. B
68, 155333 �2003�.

40 L. Wang, A. Rastelli, S. Kiravittaya, P. Atkinson, F. Ding, C. C.
Bof Bufon, C. Hermannstädter, M. Witzany, G. J. Beirne, P.
Michler, and O. G. Schmidt, New J. Phys. 10, 045010 �2008�.

41 T. Chwiej and B. Szafran, Phys. Rev. B 78, 245306 �2008�.
42 B. Szafran, M. P. Nowak, S. Bednarek, T. Chwiej, and F. M.

Peeters, Phys. Rev. B 79, 235303 �2009�.
43 W. Pan, K. Lai, S. P. Bayrakci, N. P. Ong, D. C. Tsui, L. N.

Pfeiffer, and K. West, Appl. Phys. Lett. 83, 3519 �2003�.

M. P. NOWAK AND B. SZAFRAN PHYSICAL REVIEW B 81, 235311 �2010�

235311-12



4 TIME-DEPENDENT CONFIGURATION-INTERACTION SIMULATIONS

OF SPIN SWAP IN SPIN-ORBIT-COUPLED DOUBLE QUANTUM DOTS

4 Time-dependent con�guration-interaction simula-

tions of spin swap in spin-orbit-coupled double

quantum dots

28



Time-dependent configuration-interaction simulations of spin swap in spin-orbit-coupled double
quantum dots

M. P. Nowak and B. Szafran
Faculty of Physics and Applied Computer Science, AGH University of Science and Technology,

al. Mickiewicza 30, 30-059 Kraków, Poland
�Received 21 May 2010; revised manuscript received 4 August 2010; published 12 October 2010�

We perform time-dependent simulations of spin exchange for an electron pair in laterally coupled quantum
dots. The calculation is based on configuration interaction scheme accounting for spin-orbit �SO� coupling and
electron-electron interaction in a numerically exact way. Noninteracting electrons exchange orientations of
their spins in a manner that can be understood by interdot tunneling associated with spin precession in an
effective SO magnetic field that results in anisotropy of the spin swap. The Coulomb interaction blocks the
electron transfer between the dots but the spin transfer and spin precession due to SO coupling is still observed.
The electron-electron interaction additionally induces an appearance of spin components in the direction of the
effective SO magnetic field which are opposite in both dots. Simulations indicate that the isotropy of the spin
swap is restored for equal Dresselhaus and Rashba constants and properly oriented dots.
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I. INTRODUCTION

One of ideas for solid-state quantum computation em-
ploys spins of electrons confined in quantum dots1,2 for in-
formation storage and processing. This idea drives an exten-
sive experimental research on spin manipulation,3 detection,4

decoherence, and relaxation.5 Construction of a universal
quantum gate requires implementation of a controllable spin-
exchange operations between electrons confined in adjacent
dots. In the absence of spin-orbit �SO� coupling, the spin-
spin Hamiltonian possesses an isotropic form,2 i.e., depends
only on relative orientation of the spins. Anisotropic
corrections6–8 are introduced by SO coupling. The spin pro-
cessing procedures were revised9,10 in order to remove or
minimize the anisotropy due to the SO coupling. On the
other hand a practical use was invented for the anisotropic
exchange interaction in construction of quantum gates.11–13 A
recent study14 reported that the anisotropic part of the ex-
change interaction vanishes in zero magnetic field which
should lift the limitations for spin information processing
that were the major concern of the previous work.6,9–13 The
conclusion was supported by comparison14 of the double dot
energy spectrum as found by the exact diagonalization tech-
nique and by a model Hamiltonian.

The spin interactions for two-electron systems are probed
by charging experiments15 that resolve the singlet-triplet
avoided crossings due to the SO coupling. These avoided
crossings occur in external magnetic field, for which aniso-
tropy of the exchange interaction is evident. At the moment
the spin dynamics for double quantum dots in zero magnetic
field can only be verified in a numerical experiment which
we provide in this work. We present results of simulation in
which the spin dynamics is monitored in time. We use the
method of configuration interaction to simulate the spin swap
in laterally coupled quantum dots. Our numerically exact re-
sults indicate that the swap process and result depend on the
initial orientation of the spins also in zero magnetic field. We
point out that the main source of the anisotropy is the effec-
tive magnetic field due to the SO coupling16,17 that leads to

precession of spins of moving electrons. The Coulomb inter-
action blocks the single-electron motion within the double
dot. Nevertheless, the collective motion is still observed and
we find that it results in the transfer of the spin associated
with its precession. Moreover, we demonstrate that the Cou-
lomb interaction leads to an appearance of spin components
in the direction of the effective magnetic field which are
opposite in both dots.

The effects of the SO coupling for electron energy spectra
is lifted and SU�2� symmetry is restored when the Dressel-
haus and Rashba interactions acquire the same strength.18

The Rashba19 interaction can be controlled by external elec-
tric fields and restoration of SU�2� symmetry allows for ap-
pearance of helical spin-density waves in the two-
dimensional electron gas. Our simulations indicate that for
equal Dresselhaus and Rashba coupling constants the spin
swap becomes isotropic for carefully chosen spatial orienta-
tion of the double dot for which the SO effective magnetic
field vanishes.

II. THEORY

We consider a two-dimensional Hamiltonian

h = ��2k2

2m�
+ V�r��1 + HSIA + HBIA, �1�

where k=−i�, 1 is the identity matrix, V�r� stands for the
confinement potential, HSIA and HBIA introduce the Rashba
and Dresselhaus SO interactions, respectively. For x and y
axes oriented parallel to �100� and �010� crystal directions,
SO interaction terms are given by HBIA=���xkx−�yky�
+Hcub, and HSIA=���xky −�ykx�+Hdiag. The cubic Dressel-
haus term Hcub and the diagonal Rashba terms Hdiag �for
their form see Ref. 20� are included in the calculation but
have a negligible influence on the spin evolution. We use
In0.5Ga0.5As effective mass m�=0.0465m0, dielectric con-
stant �=13.55 and assume a model confinement potential20

V�x ,y�=−V0 / ��1+ �x2 /Rx
2����1+ �y2 /Ry

2����+Vb / ��1
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+ �x2 /Rb
2����1+ �y2 /Ry

2����, where �=10, V0=50 meV is
depth of dots, and Vb=10 meV is the height of the interdot
barrier. The size of the double dot system in x and y direc-
tions is 2Rx=90 nm and 2Ry =40 nm, respectively. 2Rb
=10 nm is the interdot barrier width.

Calculations for the two-electron system start by diago-
nalization of the Hamiltonian

H = h1 + h2 +
e2

4���0�r1 − r2�
�2�

in the basis of eigenstates of Eq. �1� that are in turn deter-
mined using a multicenter Gaussian variational wave
function.20 The eigenvalues Em of Hamiltonian �2� and the
corresponding eigenfunctions �m�r1 ,�1 ,r2 ,�2� obtained
from the configuration interaction scheme are used for simu-
lation of the time evolution as described by the Schrödinger
equation i� d�

dt =H�

� = �
m

cm exp�− iEmt/���m, �3�

where cm coefficients are determined by the initial
condition.21 For diagonalization of Hamiltonian �2� we use a
basis of 325 two-electron wave functions obtained from 26
lowest energy single-electron eigenstates. The convergence
of the results is discussed in the Appendix.

In order to simulate the spin swap, in the initial condition
we localize the electrons in separate dots with opposite spin
orientations. We denote the initial spatial single-electron
wave functions localized in the left and right dots by 	l and
	r, respectively. Functions 	l and 	r are obtained by super-
position of bonding and antibonding orbitals that are ob-
tained as two lowest energy eigenstates of Hamiltonian �1�
without the SO coupling. The initial two-electron wave func-
tion is taken as an antisymmetrized product �l↓r↑
= 1

	2
�	l�r1�s+��1�	r�r2�s−��2�−	l�r2�s+��2�	r�r1�s−��1��,

where s+ and s− are orthogonal eigenfunctions of a chosen
spin component. Projection of these wave functions on
eigenfunctions of Hamiltonian �2� defines cm= 
�l↓r↑ ��m�
used in Eq. �3�.

Below we consider precession of a single electron spin in
the effective magnetic field due to the SO coupling.16 For
this purpose we solve the Bloch equation

d
s�
dt

= g�b
BSO 
 s�/� , �4�

where �b is the Bohr magneton and BSO is the effective
magnetic field due to the linear �dominating� terms of the SO
coupling

BSO =
2�

g�B�
ky

− kx

0
 +

2�

g�B�
kx

− ky

0
 . �5�

For each time step we evaluate the right-hand side of Eq. �4�
using the average values as provided by the time evolution in
the basis of single-electron eigenstates

�
d
sx�

dt

d
sy�
dt

d
sz�
dt

 =
2�

� � − 
kxsz�
− 
kysz�


kxsx� + 
kysy�
 +

2�

� � − 
kysz�
− 
kxsz�


kxsy� + 
kysx�
 .

�6�

III. RESULTS

Two-dimensional SO coupling constants depend on the
thickness d of the confinement layer �=��� /d�2, and on the
value of vertical electric field Fz �external or built-in� �
=�3DFz, where � and �3D are bulk Dresselhaus and Rashba
constants, respectively. We use �=32.2 meV nm3 for the In-
GaAs alloy22 and assume d=5.4 nm which gives �
=10.8 meV nm. This seems a maximal value of the coupling
constant that can be practically achieved in an InGaAs quan-
tum dot. The bulk Rashba constant of the alloy is �3D
=0.572 nm2 �after Ref. 23�. The electric field needed to pro-
duce �=10.8 meV nm is 18.9 meV/nm, which is equivalent
to the confinement potential drop of 102 meV across the dot
of the height d=5.4 nm. Results presented below stay quali-
tatively unaffected for smaller values of the coupling con-
stants or weaker interdot coupling �for the latter—see the
Appendix�.

A. Quantum dots placed along [100] direction

Let us first assume that the confinement potential is sym-
metric in the growth direction ��=0� and that the centers of
the dots are placed on the x axis. Initially the spin in the left
�right� dot is set parallel �antiparallel� to the x axis. Figure
1�a� shows the time dependence of the average spin stored in
the left and right dot.24 For t=0 the spins in the left and right

0 10.9 21.8
t [ps]

-1
-0.5

0
0.5

1

s l
/r
[
/2
] xl

xr

(a)
(b)

t = 0

2.8 ps

5.45 ps

10.9 ps
x [100]

y
[0
10
]

FIG. 1. �Color online� Spin-swap simulation for quantum dots
placed on the x axis. In the initial condition one electron is localized
in the left dot �x�0� with spin oriented antiparallel to the x axis and
the other electron is localized in the right dot �x0� with the spin
parallel to the x axis. Results were obtained for pure Dresselhaus
coupling. �a� Black lines show the x component of the spin stored in
the left �dashed� and right �solid� quantum dots �Ref. 24�. The
circles indicate the results obtained without SO coupling. Average
values of y and z components is zero with grey �red online� lines or
without grey �red online� circles SO coupling. �b� Spin-left �left
column� and spin-right �right column� densities in selected mo-
ments in time.
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dots are not exactly equal to �� /2 due to leakage of 	l �	r�
functions to the right �left� dot �see Fig. 1�b� for t=0�. The
spin swap is completed at t= ts=10.9 ps and no other com-
ponent of the spin is generated during the process.

The swap process exactly as illustrated in Fig. 1�a� is
obtained in the absence of SO interaction independent of the
choice of the direction in which the electron spins are ini-
tially set antiparallel to each other. In order to present the
effects of SO coupling for the spin swap, let us change the
initial condition. At t=0 the spin in the right �left� dot is now
set parallel �antiparallel� to the z axis �see Fig. 2�c��. At t
= ts the absolute values of 
sz� are visibly reduced as com-
pared to the initial condition and the spins in both dots ac-
quire an identical nonzero value of the y component. More-
over, opposite components of the spin in the x direction are
generated in both dots during the swap. The x spin compo-
nents are maximal at t= ts /2 and disappear once the swap is
completed.

For �=0 the SO effective magnetic field of Eq. �5� is
oriented along the x axis—the direction of electron tunneling
between the dots. In order to evaluate the effects of the spin
precession we performed calculations for a single electron.
We localize the electron in the left dot and assume that its
spin is oriented antiparallel to the x �Figs. 3�a�, 3�d�, and
3�g��, y �Figs. 3�b�, 3�e�, and 3�h��, and z axes �Figs. 3�c�,
3�f�, and 3�i��. The electron wave packet oscillates between
the left and right dots �Figs. 3�g�–3�i��. The electron—
localized initially in the left dot with the spin aligned with
the z �y� direction—acquires a nonzero y �z� component of
the spin when it tunnels to the right dot �Figs. 3�e� and 3�f��.
Figures 3�a�–3�c� show that the spin evolution as obtained by
integration of the Bloch Eq. �4� describing the spin preces-
sion perfectly agrees with the results of the main simulation.
For the spin initially set antiparallel to the x axis—i.e.,
aligned with BSO—no precession is observed �Figs. 3�a� and
3�d��.

Let us now return to the problem of two electrons with
spins initially parallel and antiparallel to the z axis. The re-

sults for noninteracting pair of electrons �given by lines in
Fig. 2�d�� are exactly reproduced by the sum of single-
electron solutions �dots in Fig. 2�d��. Figure 2�b� shows that
the horizontal electron-electron distance oscillates as the
noninteracting electrons tunnel from one dot to the other and
meet at the interdot barrier. The same y component of the
spin is generated in both dots in any moment of time. The
electron spins are initially oppositely oriented with respect to
the z axis and move in the opposite directions along the x
axis. Accordingly, the change of y spin component as given
by Eq. �6� has the same sign for both electrons.

When the Coulomb repulsion is switched on, the oscilla-
tion of the electron-electron distance is no longer observed
�Fig. 2�a��—the electrons occupy fixed positions in separate
dots. The electron density—the sum of spin-up and spin-
down electron densities—is nearly stationary but the compo-
nents of the sum are not. In Figs. 2�a� and 2�b� with the black
solid line we plotted the center of mass of the spin-up
electron-density packet. We notice that this center oscillates
in a very similar way for both interacting and noninteracting
electrons. Also the spin swap as obtained for interacting elec-
trons is similar to the one found in the absence of the Cou-
lomb repulsion �cf. Figs. 2�c� and 2�d��, only the swap time
is increased by a factor of 10 as the Coulomb repulsion en-
hances the effective height of the interdot barrier. The only
qualitative feature introduced by the Coulomb interaction is
the noticeable oscillation of the x component of the spin. We
found as a general rule for interacting electrons that during
the spin precession opposite spin components in the direction
of BSO appear in both dots.

Figure 4 shows the results for spins initially antiparallel in
the y direction, still for the pure Dresselhaus coupling. The
appearance of the z component of the spin during the swap is
due to spin precession and is observed for both interacting
�Fig. 4�a�� and noninteracting �Fig. 4�b�� electrons. For the
Coulomb interaction present the opposite spin components in
the x direction �aligned with BSO� appear in the dots, simi-
larly as presented in Fig. 2�c� for the spins initially aligned
with the z axis.
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FIG. 2. �Color online� Simulation similar to the one presented in
Fig. 1 only for electron spins set initially parallel or antiparallel to
the z axis. In the left �right� column of plots the Coulomb interac-
tion is included �neglected�. ��a� and �b�� The average position of
the spin-up density �black solid line�. The electron-electron distance
�dashed lines� in the x �black�, and y �blue� directions, calculated as
	
�x1−x2�2� and 	
�y1−y2�2�, respectively. ��c� and �d�� The spin
components stored in the left �dashed curves� and right �solid
curves� quantum dots �Ref. 24�. Here and in all the other plots the x,
y, and z components of the spin are given by black, blue, and red
lines, respectively. Circles in �d�—see text.
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FIG. 3. �Color online� Simulation for a single electron, pure
Dresselhaus coupling and dots placed on the x axis. The electron is
initially localized in the left dot with spin-oriented antiparallel to
the x, y, and z axis in the left, central, and right columns of plots,
respectively. ��a�–�c�� Average values of spin components are given
by curves. The circles indicate the results obtained from the Bloch
Eq. �4�. ��d�–�f�� The spin stored in the left �dashed lines� and the
right �solid lines� quantum dots. Black, blue, and red lines show the
results for x, y, and z components, respectively. ��g�–�i�� The aver-
age x position of the electron packet.
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To further illustrate the findings of the above paragraph let
us consider the case of pure Rashba coupling �Fig. 5�. In
III-V material the Dresselhaus coupling cannot be com-
pletely removed. Nevertheless, it can be small as compared
to the Rashba coupling provided that the dots height is large
and/or strong electric field is applied in the growth direction.
For the pure Rashba coupling and the considered orientation
of the dots BSO is aligned with the y axis �see Eq. �5��. For
the spins initially parallel and antiparallel to this axis, the
spin swap �Figs. 5�c� and 5�d�� occurs without generation of
neither x nor z spin components. For the spins initially
aligned with x �z� axis one observes appearance of z �x� spin
component—the same in both dots—for both interacting and
noninteracting electrons—see Figs. 5�a� and 5�b� �Figs. 5�e�
and 5�f�� that results from the spin precession. According to
Eq. �6� for �=0 the electron spin that is initially parallel to
the x axis and moves in the x direction acquires the z com-
ponent of the same sign as the spin antiparallel to the x axis
that moves in the −x direction �Figs. 5�a� and 5�b��. When
the electron-electron interaction is present we additionally
observe �see Figs. 5�a� and 5�e�� an appearance of opposite
spin components in the y direction �i.e., direction of BSO� in
both dots.

Finally, Fig. 6 shows the results for both coupling types
present with �=10.8 meV nm and �=5.4 meV nm. For the
electrons moving between the two dots, the SO magnetic

field vector is aligned with the x−y /2 line, i.e., the �21̄0�
crystal direction. For the discussion of the spin behavior we
consider this crystal direction and two orthogonal ones:
within the plane of confinement �120�, and in the growth
direction �001�. When the electrons spins are initially aligned
with the SO field vector, the swap goes without generation of
other components of the spin �Figs. 6�e� and 6�f��. For spins
initially antiparallel to the �001� direction �Figs. 6�a� and
6�b�� the precession of the spins leads to an appearance of
�120� spin component and vice versa �Figs. 6�c� and 6�d��.
The electron-electron interaction for both initial spin orien-
tations that are orthogonal to BSO leads to appearance of the
spin components parallel to the BSO direction �see the green
curves in Figs. 6�a� and 6�e�� in the form noticed above for
the pure Dresselhaus and Rashba coupling: vanishing at t
= ts, maximal at t= ts /2, and always opposite in both dots.

B. Spin oscillations due to the electron-electron
interaction

The results presented above indicate that during the swap
of spins that are initially perpendicular to BSO, the electron-
electron interaction induces appearance of spin components
in the direction of this vector that are opposite in both dots
�Figs. 2�c�, 4�a�, 5�a�, 5�e�, 6�a�, and 6�b��. The net spin in
the direction of BSO remains zero, in contrast to the spin
generated in the direction perpendicular to BSO by the spin
precession. The spin components in BSO direction vanish at
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the end of the swap t= ts, however they are maximal at t
= ts /2. Note that the XOR gate employs the square-root-of-a-
swap operation,2 i.e., the spin-swap process interrupted ex-
actly at ts /2.

Let us analyze the background of the appearance of spin
components in the direction of BSO vector. We focus on the
simulation presented in Fig. 2�c�, for which �=0, the dots
are placed along the x axis hence BSO is aligned with the x
axis, and the spins are initially set parallel and antiparallel to
the z axis.

By the Ehrenfest theorem the average electron-electron
distance in the x direction changes in time as

d

dt

�x1 − x2�2� =

4

m�

x1px1 − x2px1� +

4�

�

�x1x1 − �x1x2�

−
2i�

m�
, �7�

where the last term compensates for the imaginary part due
to the non-Hermitian x1px1 operator. The electron-electron
distance as presented in Fig. 2�a� is nearly constant but con-
tains a rapid oscillation of small amplitude which results
from a difference between the electron-electron separation in
the initial condition and the equilibrium distance for interact-
ing electrons �see Appendix�. For the purpose of analysis of
Eq. �7� it is useful to limit the basis used for Eq. �3� to four
lowest energy two-electron states, which correctly describes
the spin evolution �see Appendix� but is free of this rapid
oscillation. The results for the spin evolution, electron-
electron distance and the right-hand-side terms of Eq. �7� are
displayed in Fig. 7. For noninteracting electrons, at the right-
hand side of Eq. �7� only the 
x2px1�= 
x2�
px1� term has a
nonzero real part �Fig. 7�f��, which oscillates due to indepen-
dent tunneling of electrons which go from one dot to the
other with periodically changing positions and momenta. On

the other hand the average value of x1px1 operator is purely
imaginary.25 For noninteracting electrons the term of Eq. �7�
containing x�x vanishes �Fig. 7�f�� and so does �x in both
dots �Fig. 7�b��. Thus the oscillation of the electron-electron
distance observed in Fig. 7�d� is only due to the mean value
of x2px1 operator.

Interacting electrons keep their relative distance �Fig.
7�c�� so the terms at the right-hand side of Eq. �7� must
cancel one another. They indeed do �Fig. 7�e��. Remarkably,
in contrast to the case without Coulomb interaction �Fig.
7�f��, for interacting electrons one finds �Fig. 7�e��


x1px1� = − 
x2px1� �8�

and


�x1x1� = − 
�x1x2� . �9�

Relations �8� and �9� can be explained by analysis of the
electron motion which becomes collective when the electron-
electron interaction is introduced. The two-electron wave
function of Eq. �3�, can be written as a four-component wave
function26 �1=�↑↑�r1 ,r2�, �2=�↑↓�r1 ,r2�, �3
=�↓↑�r1 ,r2�, and �4=�↓↓�r1 ,r2�, each corresponding to a
given direction of the spin for a given electron label �e.g.,
�↑↓�r1 ,r2� corresponds to electron of position r1 �r2� with
spin oriented parallel �antiparallel� to the z axis�. Antisym-
metry of the wave function with respect to the electron in-
terchange implies �1�r1 ,r2�=−�1�r2 ,r1�, �4�r1 ,r2�=
−�4�r2 ,r1�, and �2�r1 ,r2�=−�3�r2 ,r1�. For the exchange
of initially opposite spins �3 and �4 components are most
relevant. Snapshots of ��3�2 and ��4�2 are displayed in Fig. 8
as functions of x1 and x2 calculated along the axis of the
double dot y1=y2=0 for noninteracting �Fig. 8�a�� and inter-
acting �Fig. 8�b�� electrons. Figure 8 shows that in the initial
condition the electrons occupy separate dots and that the spin
contained in the right �left� dot is oriented parallel �antipar-
allel� to the z direction. Spin orientation is inverted after the
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swap �t= ts�. For noninteracting electrons at t= ts /4 and t
= ts /2 we notice �Fig. 8�a�� that probabilities to find both
electrons in the same dot �i.e., on the diagonal x1=x2 of the
plots� is nonzero, which results from an independent electron
tunneling between the dots. Without the Coulomb interaction
the spin swap occurs as due to single-electron tunneling.

The interacting electrons do not occupy the same dot �see
the vanishing probability density on the diagonal of plots
presented in Fig. 8�b�� and the single-electron interdot tun-
neling is blocked. The interdot tunneling of separate wave
function components is still observed �Fig. 8�b� for t= ts /4 an
t= ts /2� but it occurs only along the antidiagonal of the plot
x2=−x1. Therefore, one can replace x2 by −x1 in the right-
hand side of Eqs. �8� and �9� which explains these relations.
For the electron-electron distance to be unchanged the terms

x1px1� and 
−x2px1� of Eq. �7� need to be canceled by the
terms that contain the x component of the spin. The operator
x1�x1

produces a nonzero contribution since the x spin com-
ponent generated in the left dot �x�0� has opposite sign �see
Fig. 7�a�� than the one generated in the right dot �x0�. We
conclude that the generation of opposite spin components in
the direction of the effective magnetic field is a consequence
of fixed electron-electron distance and collective evolution of
the two-electron wave function that are both induced by the
Coulomb interaction.

C. Spin exchange for �=�

For �=� the linear SO terms of Hamiltonian �1�
commute18 with 1

	2
��x−�y� operator and the effective mag-

netic field BSO= 2�
g�b

�kx+ky��1,−1,0�T is aligned with �11̄0�
crystal direction. We performed simulations of the spin swap
for �=�=10.8 meV nm. For the dots aligned in the x direc-
tion that were discussed above the results are qualitatively
identical to the ones presented in Fig. 6 only with redefined
direction of BSO vector. For �=� the direction of BSO does
not depend on the orientation of the dots, however the
strength of this field does. For the diagonal ��110�� orienta-
tion of the dots �the lower row of plots in Fig. 9� the elec-
trons tunnel between the dots with equal kx and ky wave
vectors so the field should be relatively the strongest. On the

other hand for the quantum dots oriented along the �11̄0�

direction �the upper row of plots in Fig. 9� kx and ky have
opposite sign for the electrons tunneling between the dots, so
BSO should be expected to vanish.

The simulations show that spin exchange occurs in the
same manner for the diagonal ��110�� and antidiagonal

��11̄0�� orientation of the dots only when the spins of elec-

trons are initially antiparallel in the direction of BSO ��11̄0�
or x−y�—see Figs. 9�d� and 9�h�. For the diagonal orienta-
tion of the dots and initial alignment of the spins in the
direction perpendicular to the BSO vector: in z direction �Fig.
9�f�� and in �x+y� direction �Fig. 9�g�� one observes genera-
tion of �x+y� and z spin components, respectively. The pre-
cession is accompanied by generation of opposite spin com-
ponents in BSO direction �Figs. 9�f� and 9�g�� in consistence
with the results discussed above.

Note, that the anisotropy of the swap for the diagonal
orientation of the dots is observed in spite of the fact that for
�=� the energy spectrum of SO-coupled system is
identical18 to the one obtained in the absence of SO coupling.
For �=� the SO coupling does not affect the energy spec-
trum at zero magnetic field but the effective SO magnetic
field is still present.

For the antidiagonal ��11̄0�� orientation of the dots �the
upper row of plots in Fig. 9� the spin swap becomes perfectly
isotropic and occurs in the same manner independent of the
initial spin orientation. Not a trace of spin precession is
present in accordance with the single-electron picture of the
electron tunneling that goes with kx=−ky in any moment in
time which implies BSO=0.

D. Discussion

The present study indicates that the spin swap as origi-
nally defined for the purpose of controllable coupling of spin
qubits2 localized in separate quantum dots is generally aniso-
tropic when the spin-orbit coupling is present. The aniso-
tropy of the spin swap results from the effective magnetic
field due to the spin-orbit coupling. This field changes the
direction of the electron spin as it moves in space. The study
of Ref. 14 indicated that for a carefully chosen computa-
tional two-electron basis the exchange Hamiltonian becomes
formally isotropic at zero magnetic field. The proposed14 ba-
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sis is obtained by a unitary transformation of a separable
basis of singlet and triplet states. The unitary transformation
�Eq. �13� of Ref. 14� produces basis elements in which the
spin and spatial degrees of freedom are entangled, i.e., direc-
tion of the electron spin depends on its position in space. For
the purpose of the quantum computation any basis can, in
principle, be chosen. However, the entangled basis that al-
lows for a simpler form of the Hamiltonian requires a more
challenging handling of the quantum information, which in
fact should be stored by entangled spin-orbital wave func-
tions rather than by the electron spin itself. The practical
usage of the entangled basis calls for new physical proce-
dures for preparation of the initial state and read out of the
quantum computation result.

For construction of the universal quantum gate the two-
spin operations need to be complemented by single-spin ro-
tations. The direct idea to perform the latter is to put the
system in external magnetic field to split the spin states of
the single-electron and exploit the Rabi oscillations in reso-
nant radiation of microwave or radio frequency.27 In pres-
ence of the external magnetic field �B� the spin swap be-
comes anisotropic even without SO coupling, since the
electron spins precess in B unless they are initially aligned
with the direction of the external field. In order not to inter-
fere with the spin exchange the single-spin rotations should
be applied without the external magnetic field. The original
idea for that purpose was the electrically controlled coupling
of a selected spin to a ferromagnetic medium.1 It was also
demonstrated that the single-spin rotations can be performed
using the spin precession in the SO effective magnetic field
which occurs when the electron is made to move, e.g., along
closed trajectories.28 This idea for the single-spin rotations28

does not require the external magnetic field or irradiation.

IV. SUMMARY AND CONCLUSIONS

We presented numerically exact simulations of the spin
swap for two-electron SO-coupled double quantum dots. The
study covered Dresselhaus and Rashba interactions and vari-
ous spatial orientations of the double dot. The swap of spins
as observed in time-dependent simulation involves four
mechanisms: �i� direct tunneling which consists in electron
carrying its spin from one dot to the other, �ii� the spin tun-
neling which still occurs when the direct tunneling is blocked
by the electron-electron interaction, �iii� the precession of the
spin moving in the effective magnetic field due to the spin-
orbit coupling, and �iv� generation of opposite spin compo-
nents in the direction of the effective magnetic field which is
observed for interacting pair of electrons. The third and
fourth mechanisms of the above list can be switched off for
initial spin orientation aligned with the effective magnetic
field vector BSO. For the initial orientation of the spins in one
of the directions perpendicular to BSO the spin in the other
perpendicular direction is generated during the swap as a
consequence of the spin precession. We argued that mecha-
nism �iv� is necessary to maintain a constant electron-
electron distance and is a consequence of a collective motion
of the electrons within the inner degrees of freedom which is
still observed when the single-electron tunneling between the

dots is blocked by the Coulomb repulsion. We also demon-
strated that for both coupling types present the spin swap is
largely affected by a specific orientation of the double dot
system within the �001� plane of confinement via the strength
of the effective magnetic field. In particular, we demon-
strated that the SO coupling effects can be eliminated from

the spin swap process for quantum dots aligned with �11̄0�
crystal direction. For this orientation of the dots and the
Rashba constant tuned to match the Dresselhaus constant
BSO vanishes and the spin swap becomes perfectly isotropic.
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APPENDIX

This appendix presents convergence of the results with
respect to the energy cutoff used in Eq. �3�. Let us consider
the dots placed on the x axis and electron spins initially
oriented parallel and antiparallel to the z axis that was dis-
cussed in the context of Fig. 2�c�. Figure 10 shows the results
for m=4, 10, 50, and 325 two-electron lowest energy eigen-
states used as basis elements in Eq. �3�. The basis with m
=4 covers the ground state and threefold degenerate excited
state20—which in the absence of SO coupling corresponds to
the spin triplet. The energy separation of the ground-state
and the excited state is �E=0.189 meV, which well corre-
sponds to the spin-swap time2 ts=� /�E=10.9 ps. The basis
of 10, 50, and 325 elements covers all the two-electron
eigenstates of the energy that exceeds the ground-state en-
ergy by not more than 8.9 meV, 19.4 meV, and 65.2 meV,
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that is referred to the right axis. The results presented in �a�, �b�, �c�,
and �d� correspond to the two-electron basis containing m=4, 10,
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respectively. For m4 a rapid and low amplitude oscillation
appears in the results of Fig. 10. This oscillation results from
a difference between the electron-electron separation in the
initial condition and the equilibrium distance for interacting
electrons. The initial condition is taken from single-electron
wave function obtained for noninteracting electrons which
are projected onto the basis of two-electron eigenstates �see
Sec. II�. The electron-electron distance is nearly the same in
the lowest energy four states �singlet and triplet states�. The
constant electron-electron distance obtained for m=4 �Fig.
10�a�� is the equilibrium distance for interacting electrons in
the ground state. For larger m the basis resolves between the
equilibrium distances for interacting and noninteracting elec-
trons hence the appearance of the rapid oscillations of
electron-electron distance and the resulting oscillations of the
spins. The oscillations do not affect the mechanism of the
spin swap or the swap time and have a small amplitude
which can be further reduced by a choice of confinement
parameters. In particular, Fig. 11 shows the results for the
barrier height increased from 10 to 50 meV.20 The Coulomb

interaction affects weakly the electron-electron equilibrium
distance and the rapid oscillations have a negligibly small
amplitude also for m=325. The results presented in this pa-
per were obtained for the fully convergent 325 element basis
with the exception of Sec. III B, where we use the four-
element basis for simplicity. For �E=65.2 meV the shortest
oscillation period that can be accounted for is 0.06 ps.

1 D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 �1998�.
2 G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59,

2070 �1999�.
3 J. R. Petta, A. C. Johnson, J. M. Taylor, E. Laird, A. Yacoby, M.

D. Lukin, and C. M. Marcus, Science 309, 2180 �2005�.
4 J. M. Elzerman, R. Hanson, L. H. W. van Beveren, B. Witkamp,

L. M. K. Vandersypen, and L. P. Kouwenhoven, Nature �Lon-
don� 430, 431 �2004�.

5 J. M. Taylor, J. R. Petta, A. C. Johnson, A. Yacoby, C. M. Mar-
cus, and M. D. Lukin, Phys. Rev. B 76, 035315 �2007�.

6 K. V. Kavokin, Phys. Rev. B 64, 075305 �2001�; 69, 075302
�2004�.

7 Ş. C. Bădescu, Y. B. Lyanda-Geller, and T. L. Reinecke, Phys.
Rev. B 72, 161304�R� �2005�.

8 S. Gangadharaiah, J. Sun, and O. A. Starykh, Phys. Rev. Lett.
100, 156402 �2008�.

9 N. E. Bonesteel, D. Stepanenko, and D. P. DiVincenzo, Phys.
Rev. Lett. 87, 207901 �2001�.

10 G. Burkard and D. Loss, Phys. Rev. Lett. 88, 047903 �2002�.
11 L.-A. Wu and D. A. Lidar, Phys. Rev. A 66, 062314 �2002�.
12 D. Stepanenko and N. E. Bonesteel, Phys. Rev. Lett. 93, 140501

�2004�.
13 N. Zhao, L. Zhong, J.-L. Zhu, and C. P. Sun, Phys. Rev. B 74,

075307 �2006�.
14 F. Baruffa, P. Stano, and J. Fabian, Phys. Rev. Lett. 104, 126401

�2010�.
15 J. Könemann, R. J. Haug, D. K. Maude, V. I. Fa’lko, and B. L.

Altshuler, Phys. Rev. Lett. 94, 226404 �2005�; C. Fasth, A. Fu-
hrer, L. Samuelson, V. N. Golovach, and D. Loss, ibid. 98,
266801 �2007�; A. Pfund, I. Shorubalko, K. Ensslin, and R.
Leturcq, Phys. Rev. B 76, 161308�R� �2007�.

16 S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P.
Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W.
Wegscheider, D. Weiss, and W. Prettl, Phys. Rev. Lett. 92,
256601 �2004�; L. Meier, G. Salis, E. Gini, I. Shorubalko, and

K. Ensslin, Phys. Rev. B 77, 035305 �2008�.
17 C. Flindt, A. S. Sorensen, and K. Flensberg, Phys. Rev. Lett. 97,

240501 �2006�; P. Földi, O. Kalman, M. G. Benedict, and F. M.
Peeters, Nano Lett. 8, 2556 �2008�.

18 J. Schliemann, J. C. Egues, and D. Loss, Phys. Rev. Lett. 90,
146801 �2003�.

19 B. A. Bernevig, J. Orenstein, and S.-C. Zhang, Phys. Rev. Lett.
97, 236601 �2006�; J. D. Koralek, C. Weber, J. Orenstein, A.
Bernevig, S. Zhang, S. Mack, and D. Awschalom, Nature �Lon-
don� 458, 610 �2009�.

20 Details of the configuration-interaction method and results for
stationary states are given in M. P. Nowak and B. Szafran, Phys.
Rev. B 81, 235311 �2010�.

21 Recently, a time-dependent approach was used for simulation of
a single-electron behavior in a one-dimensional model of a SO-
coupled double quantum dot perturbed by electric pulses: D. V.
Khomitsky and E. Ya. Sherman, EPL 90, 27010 �2010�.

22 S. Saikin, M. Shen, M. Cheng, and V. Privman, J. Appl. Phys.
94, 1769 �2003�.

23 E. A. de Andrada e Silva, G. C. La Rocca, and F. Bassani, Phys.
Rev. B 55, 16293 �1997�.

24 The spin component i stored in the left dot is calculated as: sl

= 
��r1 ,�1 ,r2 ,�2��s1
i �l�r1�+s2

i �l�r2����r1 ,�1 ,r2 ,�2��, where si

is the spin component i operator and �l�x� is the step function
that takes value 1 in the left dot and 0 in the right dot. Formula
for the spin stored in the right dot sr is the same but with �l

replaced by �r�x�=1−�l�x�, and sl+sr= 
s1
i +s2

i �.
25 This can be explained as follows. The two-electron problem

without the Coulomb interaction separates into two single-
electron ones. According to the present approach initially the
spatial single-electron wave function is a superposition of the
ground-state wave function of even parity 	0 and the first ex-
cited state wave function of odd parity 	1. One can arrange for
	0 and 	1 to be real valued. In the evaluation of the right-hand
side of Eq. �7� for noninteracting electrons the cross terms

0 319 638
t [ps]

-1

0

1

l/r
[ k
/2
] 40

60

di
st
an
ce
[n
m
]

yl/r
xr

xl

zr

zl

FIG. 11. �Color online� Same as Fig. 10�d� only for interdot
barrier height increased from Vb=10 meV to Vb=50 meV.

M. P. NOWAK AND B. SZAFRAN PHYSICAL REVIEW B 82, 165316 �2010�

165316-8




	0�xpx�	1� vanish for the parity reason and 
xpx� is purely
imaginary for any localized real wave function.

26 B. Szafran, M. P. Nowak, S. Bednarek, T. Chwiej, and F. M.
Peeters, Phys. Rev. B 79, 235303 �2009�; S. Moskal, S.
Bednarek, and J. Adamowski, Phys. Rev. A 76, 032302 �2007�.

27 F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C.

Nowack, T. Meunier, L. P. Kouwenhoven, and L. M. K. Vander-
sypen, Nature �London� 442, 766 �2006�.

28 D. Frustaglia and K. Richter, Phys. Rev. B 69, 235310 �2004�; P.
Földi, B. Molnár, M. G. Benedict, and F. M. Peeters, ibid. 71,
033309 �2005�; S. Bednarek and B. Szafran, Phys. Rev. Lett.
101, 216805 �2008�.

TIME-DEPENDENT CONFIGURATION-INTERACTION… PHYSICAL REVIEW B 82, 165316 �2010�

165316-9



5 SINGLET-TRIPLET AVOIDED CROSSINGS AND EFFECTIVE

G-FACTOR VERSUS SPATIAL ORIENTATION OF SPIN-ORBIT-COUPLED

QUANTUM DOTS

5 Singlet-triplet avoided crossings and e�ective g-

factor versus spatial orientation of spin-orbit-coupled

quantum dots

38



PHYSICAL REVIEW B 83, 035315 (2011)

Singlet-triplet avoided crossings and effective g factor versus spatial orientation
of spin-orbit-coupled quantum dots

M. P. Nowak and B. Szafran
Faculty of Physics and Applied Computer Science, AGH University of Science and Technology,

al. Mickiewicza 30, PL-30-059 Kraków, Poland
(Received 28 September 2010; revised manuscript received 2 December 2010; published 19 January 2011)

We study avoided crossings opened by spin-orbit interaction in the energy spectra of one- and two-electron
anisotropic quantum dots in perpendicular magnetic field. We find that for simultaneously present Rashba and
Dresselhaus interactions the width of avoided crossings and the effective g factor depend on the dot orientation
within the (001) crystal plane. The extreme values of these quantities are obtained for [110] and [110] orientations
of the dot. The width of singlet-triplet avoided crossing changes between these two orientations by as much as two
orders of magnitude. The discussed modulation results from the orientation-dependent strength of the Zeeman
interaction, which tends to polarize the spins in the direction of the external magnetic field and thus remove the
spin-orbit coupling effects.

DOI: 10.1103/PhysRevB.83.035315 PACS number(s): 73.21.La

I. INTRODUCTION

Spin-related phenomena in few-electron quantum dots have
been under extensive investigation during the past decade. The
studies have covered spin relaxation involving spin-orbit inter-
action and phonon emission,1 spin dephasing2 due to coupling
to nuclear spins,3 as well as the spin-exchange interaction.4

Besides the fundamental interest, these studies were motivated
by an idea to implement quantum computation5 on spins
of separate electrons confined in quantum dot arrays. The
spin-orbit (SO) coupling is considered for spin manipulation
within the orbital degrees of freedom6 as well as in the context
of the anisotropy7 of the exchange interaction for quantum
gating.8

Few-electron systems confined in circular quantum dots un-
dergo ground-state angular momentum transitions in external
magnetic field (B).9–11 For the electron pair these transitions
are observed only in presence of the electron-electron interac-
tion and are accompanied by spin transitions with ground-state
changing between singlet and triplet depending on the parity of
angular momentum quantum number.11 Singlet-triplet ground-
state transitions in two-electron quantum dots are observed
in charging experiments.12 In elliptical quantum dots as well
as in double dots,13 the angular momentum transitions are
replaced by ground-state parity symmetry transformations still
accompanied by singlet-triplet transitions.

The SO coupling mixes the eigenstates of opposite parities
and spin. In the presence of the SO interaction the singlet-
triplet transition occurs through an avoided crossing that for
planar quantum dots was discussed in a number of recent
theoretical papers.14 The SO interaction usually introduces
energetically weak effects hence the singlet-triplet avoided
crossing is narrow and difficult to observe experimentally. The
first observations of singlet-triplet avoided crossings due to SO
coupling were performed in transport experiments on quantum
dots formed in gated InAs quantum wires.15 A transport
experiment resolving this avoided crossing in a planar structure
was performed only recently16 on a single InAs self-assembled
quantum dot.

The SO interaction appears due to inversion asymmetry
of the crystal lattice (Dresselhaus17 coupling) and/or of

the nanostructure (Rashba18 coupling). The resulting SO
Hamiltonian is not invariant with respect to rotations within the
plane of confinement. The anisotropy of SO interaction was
investigated by observation of singlet-triplet avoided crossing
for rotated external magnetic-field vector.16 The study of
Ref. 16 extends the previous work19 in which the spin splittings
were controlled by orientation of the external magnetic field
superposing the effective magnetic field20 introduced by SO
coupling. It was also demonstrated21 that in the presence of
the SO coupling the nonlinear Kondo conductance depends on
the orientation of external magnetic field.

In this paper we consider a planar anisotropic quantum dot
in a perpendicular magnetic field and demonstrate that the
anisotropy of SO interaction can be used for tuning the width
of the singlet-triplet avoided crossing by spatial orientation
of the dot. This tunability appears provided that both SO
coupling types are present. The discussed effect results from
dependence of the effective strength of the Zeeman interaction
on the quantum dot orientation within the (001) crystal plane.
The Zeeman interaction tends to polarize electron spins in
the direction of the magnetic field. A complete polarization
amounts in removal of the SO coupling effects. The extent
of the spin polarization—and thus also the effective Landé
factor22—vary with the dot orientation. For similar values
of SO coupling constants the width of the avoided crossing
changes by two orders of magnitude between a few μeV to
about 0.5 meV. The dependence of the width of singlet-triplet
avoided crossing on spatial orientation of the dot is present for
any form of confinement potential (quantum well or parabolic
profile) for both single and double quantum dots.

II. THEORY

A. Hamiltonian

We consider a quantum dot defined within the (001)
plane with x and y axes identified with [100] and [010]
crystal directions, respectively. The magnetic field is oriented
parallel to the growth [001] direction (z). We adopt a two-
dimensional approximation assuming that the confinement
potential is separable into vertical and planar components

035315-11098-0121/2011/83(3)/035315(8) ©2011 American Physical Society
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W (r) = Vz(z) + V (x,y) and that the vertical confinement is
much stronger than the planar one. Under these conditions
the contribution of states excited in the vertical direction
that could be introduced by the spin-orbit coupling and
by the electron-electron interaction is negligible. The two-
dimensional single-electron Hamiltonian takes the form14

H = h1 + 1
2gμBBσz + HSIA + HBIA, (1)

where h = [ h̄2k2

2m∗ + V (x,y)] is the spatial Hamiltonian, 1 is the
identity matrix, k = −i( ∂

∂x
, ∂
∂y

) + e
h̄

(Ax,Ay), g stands for the

Landé factor, and HSIA and HBIA describe Rashba18 (struc-
ture inversion asymmetry) and Dresselhaus17 (bulk inversion
asymmetry) SO interactions. We use the symmetric gauge
with Ax = −y B

2 , Ay = x B
2 . The two-dimensional Rashba

interaction is composed of the diagonal and linear parts
HSIA = H lin

SIA + H
diag
SIA with

H lin
SIA = α(σxky − σykx), (2)

and

H
diag
SIA = α3Dσz

[
∂W

∂y
kx − ∂W

∂x
ky

]
. (3)

The two-dimensional coupling constant α in Eq. (2) is related
to the bulk coupling constant α3D as α = α3D〈 ∂W

∂z
〉, where the

average value is calculated for the ground-state wave function
in the growth direction. The Dresselhaus interaction contains
a linear and cubic terms HBIA = H lin

BIA + H cub
BIA,

H lin
BIA = β[σxkx − σyky], (4)

H cub
BIA = γ3D

[
σykyk

2
x − σxkxk

2
y

]
, (5)

where γ3D is the bulk coupling constant and the two-
dimensional constant is defined by β = γ3D〈k2

z 〉. We adopt
the material parameters for an In0.5Ga0.5As quantum dot,
α3D = 0.572 nm2 (see Ref. 23) and γ3D = 32.2 meV nm3

(see Ref. 24), the electron effective mass m∗ = 0.0465m0, and
the Landé factor g = −8.97. For Vz in the form of an infinite
quantum well of height d the two-dimensional Dresselhaus
constant is β = γ3D

π2

d2 . For d = 5.42 nm we have β =
10.8 meV nm. The two-dimensional Rashba constant achieves
this value when (an external or built-in) vertical electric field
acquires 188.8 kV/cm.

Below we consider a model confinement potential

Vc(x ′,y ′) = − V0(
1 + [

x ′2
K2

]μ)(
1 + [

y ′2
L2

]μ) , (6)

where V0 = 50 meV is assumed for the depth of the quantum
dot. The exponent μ = 10 is applied for which the potential
profile has a form of a rectangular potential well with smoothed
boundaries. We take 2K = 40 nm as the smaller length of the
dot and the larger length is taken 2L = 90 nm, unless stated
otherwise. The primes standing in Eq. (6) are referred to the
crystal directions x and y by

x ′ = x cos(φ) − y sin(φ), y ′ = x sin(φ) + y cos(φ). (7)

The orientation of the dot with respect to the crystal directions
is displayed in Fig. 1 for φ = π/4. The effects discussed below
remain qualitatively the same for other profiles of the dots. At
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FIG. 1. (Color online) The contour shows a quantum dot of width
2K = 40 nm and length 2L = 200 nm placed along [110] crystal
direction [φ = π/4 in Eq. (7)]. With the colors we plotted the values
of the cosine in the integrand of Eq. (13) for α = 10.8 meV nm.

the end of next section we present also results for elliptical
parabolic confinement potential.

B. Method

The eigenstates of the single-electron Hamiltonian (1) are
calculated on a basis of multicenter Gaussian functions which
is a precise tool for treatment of confinement potentials of
arbitrary or no symmetry,25

φν =
∑
ks

cν
ksχs exp

[
− (r − Rk)2

2a2
+ ieB

2h̄
(xYk − yXk)

]
, (8)

where the centers of Gaussians Rk = (Xk,Yk), are distributed
on a rectangular array,25 and the localization parameter a

is optimized variationally. In Eq. (8) s = ±1 and χs are
eigenstates of the Pauli matrix σz.

The two-electron states are found by the exact diagonal-
ization approach, which uses the basis of the antisymmetrized
products of operator (1) eigenstates,

� = 1√
2

N∑
μ=1

N∑
ν=μ+1

[φμ(1)φν(2) − φμ(2)φν(1)], (9)

for diagonalization of the two-electron Hamiltonian H2 =
H (1) + H (2) + e2

4πεε0r12
(ε = 13.55 is taken for the dielectric

constant). For 2K = 40 nm and 2L = 90 nm we use a basis
of 25 × 25 centers, which gives 1250 elements including
the spin degree of freedom. In the two-electron calculations
we take N = 30 lowest-energy single-electron spin orbitals
which produces a basis of 435 elements and guarantees the
convergence of the variational result better than 1 μeV.

III. RESULTS AND DISCUSSION

A. Effective g factor and orientation of the dot

In order to explain the dependence of the strength of
the Zeeman interaction on the orientation of the dot—which
underlies the results to be presented below—let us consider the
special case of equal linear SO coupling constants α = β =
10.8 meV nm and neglect the cubic Dresselhaus and diagonal
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Rashba terms of SO interaction, which are small anyway.26

We consider the approximate Hamiltonian for B = 0 defined
as H0 = h1 + H lin

SIA + H lin
BIA. H0 commutes with the operator

of the [110] spin component and SO coupling shifts the
entire electron energy spectrum by a constant quantity27 EN =
εN − 2α2m∗

h̄2 , where EN and εN denote energy eigenvalues with
and without SO coupling, respectively. For B = 0 the SO
coupled eigenfunctions of the H0 operator N± corresponding
to ±h̄/2 spin eigenvalues in the [110] direction are related to
orbital eigenfunctions ϕN that are obtained in the absence of
the SO coupling as

φN±(x,y) = 1√
2

(
1

±e−iπ/4

)
ϕN (x,y) e∓(i

√
2αm/h̄2)(x+y). (10)

The magnetic-field vector parallel to the growth direction
introduces the Zeeman interaction with the σz matrix to the
Hamiltonian, and the [110] spin component is no longer a good
quantum number. Let us try to diagonalize the Hamiltonian
including the Zeeman effect Hz = H0 + 1

2gμBBσz taking H0

eigenstates (10) as the basis. The shortest reasonable basis
contains two degenerate ground-state wave functions φ1±
corresponding to opposite spin orientations and the same
orbital wave function ϕ1. The matrix of the Hz operator takes
the form

Hz =
( 〈φ1+|Hz|φ1+〉 〈φ1+|Hz|φ1−〉

〈φ1−|Hz|φ1+〉 〈φ1−|Hz|φ1−〉
)

, (11)

where both diagonal terms are 〈φ1±|HB |φ1±〉 = E1 − 2α2m

h̄2 ,

and the off-diagonal ones are

〈φ1±|HB |φ1∓〉= 1

2
gμBB

∫
|ϕ1(x,y)|2e±i(2

√
2αm∗/h̄2)(x+y)dxdy.

(12)

For potentials with an in-plane inversional symmetry that are
considered in this paper the matrix element (12) is real and is
given by

〈φ1±|HB |φ1∓〉

= 1

2
gμBB

∫
|ϕ1(x,y)|2 cos

[
2
√

2αm∗

h̄2 (x + y)

]
dxdy.

(13)

Figure 1 shows the plot of the cosine term in the integrand.
The argument of the cosine has a fixed orientation with respect
to the crystal directions and changes sign along [110] with a
period of λSO = πh̄2

2αm∗ (for the applied parameters λSO = 238.4
nm). For the quantum dot of length L = 200 nm oriented along
[110] (see Fig. 1) the cosine has the same sign within the
quantum dot area. For this orientation the off-diagonal terms of
Hamiltonian matrix (11) are the largest. On the other hand, for
the dot oriented along [110] the sign of the integrand oscillates
within the quantum dot area and the off-diagonal terms
are necessarily smaller. The off-diagonal matrix elements mix
the σx−y eigenstates leading to alignment of the spin along
the direction of the field (z). Therefore the spin polarization
due to the Zeeman effect should be the strongest for the [110]
dot orientation and the weakest for the dot oriented along the
[110] crystal direction.
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FIG. 2. (Color online) (a) The dots show the eigenvalues of
Hamiltonian (11) and the lines present the results of diagonalization
of the exact Hamiltonian in function of the external magnetic field for
α = β = 10.8 meV nm, 2K = 40 nm, and 2L = 350 nm. The results
for [110] and [110] orientations of the dot are shown by gray (red
online) and black lines, respectively. (b) The spin of the two lowest
energy levels for both orientations of the dot. The dots in (c) and (d)
show the results of diagonalization of 4 × 4 matrix Hamiltonian with
basis including the first excited state (see text).

The results of the diagonalization of matrix Hamiltonian
(11) are displayed in Fig. 2(a) for the dot oriented along [110]
(black dots) and [110] (red dots) directions. In Fig. 2(b) we
display the average spin for the two lowest-energy states for
both orientations of the dot. The lines in Fig. 2 show the
results of the exact diagonalization with the basis given by
Eq. (8). The eigenvalues of matrix (11) quite well reproduce
the exact energy levels and the average spin.28 According to
the intuition given by Fig. 1, the electron spin reacts to the
application of the external magnetic field in a more pronounced
manner for the [110] orientation of the dot than for the
perpendicular orientation [110]. As the nonzero magnetic field
lifts the ground-state degeneracy, the ground state (the first
excited state) becomes nearly spin-up (spin-down) polarized.
Polarization of the spin by infinitesimal B for the dot oriented
along the [110] direction is much weaker and increases for
higher fields. This increase [black lines in Fig. 2(b)] is not
very well reproduced by the two-element basis (black dots).
Inclusion of the first excited scalar wave function ϕ2 to the
approximate calculation gives four basis elements of type
(10). The results are displayed in Figs. 2(c) and 2(d). The
four-element basis reproduces also the excited energy levels
and an improvement of the description of sz(B) dependence is
obtained, particularly for the [110] orientation.

The extent of the spin polarization that varies with the dot
orientation results in the dependence of the Kramers multiplet
splitting induced by weak magnetic fields. This in turn leads
to the orientation dependence of the effective g∗ factors,22

which in the experiments are estimated by the splitting of
energy levels by weak magnetic field. We estimate the effective
factor by

g∗ = lim
B→0

E2 − E1

μBB
, (14)
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FIG. 3. (Color online) Energy spectrum (upper row) and mean values of the z component of the spin (lower row of plots) for a single
electron in a quantum dot of width 2K = 40 nm and various lengths 2L. The results for the dot oriented along [110] and [110] are given in
black and gray (red online), respectively. Equal Rashba and Dresselhaus linear coupling constants were assumed, α = β = 10.8 meV nm. In
(a) and (e) the green dotted lines show the energy spectrum in the absence of SO interaction shifted down on the energy scale by 0.142 meV.

which for the antidiagonal [110] orientation of the dot gives
g∗ = −8.7 (quite close to g = −8.97) and for the diagonal
orientation [110] g∗ = −2.5 only.

B. Single-electron results

Let us now consider the results obtained by diagonalization
of Hamiltonian (1) with basis (8). Figure 3 shows the energy
levels and mean spin z components for various lengths of the
dot 2L for the diagonal [110] (black color) and the antidiagonal
[110] (red color) dot orientation. For the dot which is close to
the square profile [2K = 40 nm and 2L = 50 nm; see Fig. 3(a)]
we plotted the results without SO coupling by the green dotted
line (shifted down on the energy scale by 0.142 meV). The
first and second energy levels correspond to opposite parity and
spin. For B below the avoided crossing, the first excited state is
of even parity with spin oriented down and the second excited
state is of odd parity with spin oriented up. The SO coupling
opens an avoided crossing between these two energy levels.
This avoided crossing is wider for the diagonal and thinner for
the antidiagonal dot orientation [Fig. 3(a)]. The width of this
avoided crossing is determined by an extent to which the SO
coupling entangles the spin and orbital wave functions. The
width varies more strongly with the dot orientation when the
anisotropy of the dot is enhanced, i.e., for larger lengths of
the dot [Figs. 3(a), 3(c), 3(e), and 3(g)], particularly when it
becomes comparable to λSO. For the antidiagonal orientation
of the dots, the strong Zeeman effect quickly polarizes the
electron spin and thus removes the SO coupling effects from
the energy spectrum. The energy spectra obtained without SO
coupling are close to the ones obtained for the antidiagonal
orientation of the dot—see Figs. 3(a) and 3(e).

Figure 4 shows the dependence of the effective g∗ factor on
the orientation of the dots for 2L = 90 nm and 200 nm. The
g∗ factor acquires maximal (minimal) absolute value for the
antidiagonal (diagonal) dot orientation. For nonequal coupling
constants, variation of g∗ is reduced, and disappears for a single
type of SO coupling present. Note that for the antidiagonal

orientation of the dot the same g∗ is obtained for both L

considered.
For completeness, in Fig. 5 we display the mean value of the

z component of the spin in the function of the dot orientation
angle for α = β, 2L = 90 nm, and two values of the magnetic
field B = 1 T (red) and B = 3 T (black curves). The spin
polarization is the largest for φ = π/4 and the smallest for
φ = −π/4.

The spatial orientation of the dot has a significant influence
on the SO-related avoided crossings only when both types
of the coupling are of comparable strength. Figure 6 shows
the results for the dominant Dresselhaus term α = 0.2β for
2L = 90 nm. The dependence of the width of the avoided
crossing on orientation is qualitatively the same as for α = β

[see Figs. 3(c) and 3(d)], only much weaker. For comparison,
the energy spectrum for α = 0 and β = 10.8 meV nm is given
in Fig. 6(a) with the black dotted line. For a single type of SO
coupling present the same energy spectrum is obtained for any
dot orientation.

C. Two-electron results

The two-electron spectrum without SO coupling is given in
Fig. 7(a) by the dotted lines (green online). When the magnetic

FIG. 4. (Color online) Effective g∗ factor estimated by Eq. (14)
in function of the spatial orientation of the dot for 2K = 40 nm,
2L = 90 nm (solid lines), and 2L = 200 nm (dashed lines) for β =
10.8 meV nm and various values of α.
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FIG. 5. (Color online) 〈sz〉 for B = 1 T and 3T plotted in function
of angle φ with black and gray (red online) lines, respectively, for
2L = 90 nm and α = β = 10.8 meV nm.

field is swept across B = 1.1 T the ground state changes from
the singlet with even spatial parity to the spin-up polarized
triplet with odd spatial parity. The dashed and solid lines in
Fig. 7 correspond to SO coupling for α = β = 10.8 meV nm.
The results for [110] and [110] dot orientations are plotted
with the black and red lines, respectively. For the [110]
dot orientation the singlet-triplet transition produces a very
narrow avoided crossing of width 6 μeV as compared to the
pronounced (0.37 meV wide) avoided crossing obtained for
the [110] orientation. For the [110] orientation the mean values
of the spin vary smoothly as functions of B [see Fig. 7(b)],
while for [110] the mean spin is nearly a bivalued function of
magnetic field [see Fig. 7(b)], which indicates a removal of the
SO coupling effects. The corresponding energy spectrum [red
lines in Fig. 7(a)] is very close to the spectrum obtained without
SO coupling (green dotted lines) up to a constant energy shift
[the energy levels without SO coupling are shifted down by
0.285 meV in Fig. 7(a)]. A similar fact was presented above
for the single electron in Fig. 3(a).

In Fig. 8(a) we present two lowest-energy levels as functions
of the orientation of the dot for three values of magnetic
field: 1 μT (residual B), 0.5 T—before the singlet-triplet
avoided crossing—and for 1.1 T—at the center of avoided
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FIG. 6. (Color online) (a) Energy spectrum for a single-electron
dot with a larger length aligned with [110] (black), and [110] (red)
crystal directions given by solid and dashed lines. The dot size is
2K = 40 nm and 2L = 90 nm, β = 10.8 meV nm, and α = 0.2β.
The dotted curve shows the results without the linear Rashba term
(α = 0). (b) Mean value of sz operator for three lowest energy states,
respectively, for [110] and [110] dot orientations. The results for these
geometrical parameters and α = β were given in Figs. 3(c) and 3(d).
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FIG. 7. (Color online) (a) Two-electron energy spectrum for
single-elongated dot aligned along [110] (black) and [110] (dark
gray–red online). The dotted curve (green online) shows the results
without SO coupling shifted down by 0.285 meV. (b) Mean value
of sz for two lowest-energy states (solid, short dashed, respectively)
for [110] (black) and [110] (dark gray–red online) dot orientation.
The value of α = β = 10.8 meV nm is assumed, 2K = 40 nm and
2L = 90 nm.

crossing. The average spins are displayed in Fig. 8(b). For the
residual magnetic field the energy spectrum is independent
of the dot orientation and the ground-state spin is zero.
Nevertheless, a dependence of the spin of the excited state
(threefold degenerate at B = 0) on the orientation of the dot is
noticeable. For 0.5 T the energy levels weakly depend on the
dot orientation, but the dependence of the spins is strong. The
situation is opposite for 1.1 T. In both the cases for φ = π/4
the spins approach closest to 0 and h̄—values that are found
in the absence of SO interaction. For 1.1 T there is a stronger
peak or dip structure in the spins displayed in Fig. 8(b), which
results from the near degeneracy of energy levels [see Fig. 8(a)]
that makes the system particularly susceptible to perturbation
by external magnetic field.
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FIG. 8. (Color online) (a) Two lowest two-electron energy levels
plotted in blue for B = 1 μT, in black for B = 0.5 T, and in red for
B = 1.1 T. (b) sz mean value. The same parameters as in Fig. 7 were
adopted.
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D. Parabolic and double quantum dots

The profiles of the confinement potentials depend strongly
on the type of quantum dots, their size, and growth conditions.
The effects discussed above occur in the low-energy part of
the spectrum and appear as functions of the dot orientation. In
order to demonstrate that they are not specific to any profile
of confinement potential, we considered also an elliptical
parabolic quantum dot and a double dot.

Confinement potential of electrostatic quantum dots29 is
generally parabolic close to its minimum, although potential
profiles closer to a quantum well can also be realized.30 We
considered the potential in the form

Vp(x ′,y ′) = m∗ω2
x

2
x ′2 + m∗ω2

y

2
y ′2, (15)

with h̄ωx = 2 meV and h̄ωy = 5 meV. The results for x ′

identified with [110] and [110] directions are given in
Fig. 9. The avoided crossing between the first and second
excited states of the single-electron [Fig. 9(a)] as well as
the singlet-triplet [Fig. 9(b)] avoided crossing vary strongly
with the orientation of the dots in consistence with the above
discussion for the confinement potential given by Eq. (6).

We model a double dot by introducing a barrier in the center
of the quantum dot,

Vd (x ′,y ′) = Vc(x ′,y ′) + Vb(
1 + [

x ′2
K2

]μ)(
1 + [

y ′2
B2

]μ) , (16)

where Vc is defined by Eq. (6) with 2K = 40 nm and
2L = 90 nm, Vb = 10 meV, and 2B = 10 nm is taken for
the barrier width. For comparison, the results for the single
dot were presented in Fig. 3(c) for the single electron and in
Fig. 6(a) for the electron pair. Both the single- and two-electron
avoided crossings that were discussed above involved mixing
of even and odd spatial parity states by SO interaction. For the
double dot these states correspond to bonding and antibonding
orbitals, respectively. The avoided crossings observed for the
double dot are considerably thinner than in the single-dot case
which is due to the introduction of the interdot barrier (in
the limit of an impenetrable interdot barrier the bonding and
antibonding orbitals are degenerate). In Fig. 10 we find the
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FIG. 9. (Color online) One- (a) and two-electron (b) energy
spectrum for elliptical dot aligned along [110] (black) and [110]
(gray–red online) for the elliptic parabolic confinement potential
given by Eq. (15). Results are obtained for α = β = 10.8 meV nm.
The insets present the equipotential lines.
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FIG. 10. (Color online) Same as Fig. 9 only for the double dot
potential (16).

dependence of the width of avoided crossing on the orientation
of the dot that agrees with the precedent results.

E. Discussion

The presented results indicate that the width of SO-related
avoided crossings can be designed by specific orientation of
the dot with respect to the crystal axes. The choice of the
orientation has to be made at the sample fabrication stage.
In gated quantum dots with confinement potential of the
electrostatic origin29 the orientation of the dot can be chosen
quite arbitrarily by the shape of electrodes defined on the
sample surface. Orientation of quantum dots with structural
confinement can also be intentionally controlled. For instance,
InGaAs/GaAs double quantum dots are formed on pre-
patterned substrates along either [110] or [110] directions,31

for which the width of the SO-related avoided crossing
acquires extremal values. In electrostatic quantum dots with
a multielectrode setup,29 rotation of the confinement potential
should be possible to realize by voltages applied to the gates
on a single sample.

We find that the orientation of the dot influences the width
of avoided crossings provided that both the linear SO coupling
constants are similar. The Rashba interaction constant can be
adjusted by external electric fields,32 to match the Dresselhaus
constant in particular for observation33 of persistent spin helix
states in quantum wells.34 When only a single type of SO
coupling is present, the orientation of the dots has no influence
on the energy spectrum. In presence of the SO coupling, the
orbital angular momentum is not a good quantum number even
for circular confinement potentials. Nevertheless, both the spin
components of a single-electron wave function do possess a
definite, albeit different, angular momenta. In consequence,
the charge density reproduces the circular symmetry of the
confinement potential.35 In potentials of circular symmetry
the charge density becomes anisotropic only when both SO
coupling types are present and additionally the Zeeman effect
is introduced by external magnetic field.35

The effect of the dot orientation on the energy spectrum
is obtained in external magnetic field. For B = 0, the dot
orientation has no influence on the Kramers-degenerate energy
spectrum even when both SO coupling types are present.
For α = β the effective magnetic field introduced by SO
coupling is oriented along the [110] direction independent
of the orientation of the dot, nevertheless, its strength is dot-
orientation dependent.36 The electron spins precess in the ef-
fective magnetic field. Therefore the orientation of the dot does
matter for the spin manipulation at zero magnetic field,27,36

even though no effect on the energy spectrum is present.
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IV. SUMMARY AND CONCLUSIONS

We studied the avoided crossings opened by SO interaction
in the single- and two-electron planar (001) quantum dots
as functions of the external perpendicular magnetic field. We
demonstrated that the width of these avoided crossings can be
tuned within a range of two orders of magnitude by orientation
of the quantum dot with respect to the crystal directions.

The tunability is achieved provided that (i) both Rashba and
Dresselhaus interactions are present with comparable values
of linear coupling constants (α 	 β), (ii) the dot is anisotropic,
and (iii) its larger length is comparable to λSO = πh̄2/(2αm∗).
The dependence of the width of avoided crossings on the
orientation of the dot results from a different strength of the
Zeeman interaction, which more or less efficiently polarizes
the electron spin. The spin polarization removes the spin-

orbital entanglement from wave functions along with the
SO coupling effects from the energy spectrum. Thus the
dot orientation affects simultaneously the width of avoided
crossings and the effective Landé factor g∗. As a general rule,
the dot orientations producing large |g∗| values correspond to
narrow avoided crossings.
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We study electron states confined in two-dimensional circular quantum rings in the presence of spin-orbit
coupling due to both structure and crystal inversion asymmetry in the external magnetic field. It is demon-
strated that the confined electron density loses the circular symmetry of the confinement potential provided that
both Rashba and Dresselhaus coupling constants are nonzero, with the exception of a special case of equal
coupling constants and absence of the spin Zeeman interaction. An elliptical deviation from the circular
symmetry—present already for a single confined electron—is for two electrons strengthened by the Coulomb
repulsion. We discuss signatures of the charge-density deformation in the experimentally accessible quantities:
magnetization and charging properties of the ring. Relevance of the results of one-dimensional ring models for
description of spin-orbit coupling effects is also discussed.
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I. INTRODUCTION

Spin-orbit coupling in semiconductor nanostructures is
considered useful for spintronics and quantum information
processing since it translates the spatial motion of an electron
into rotation of its spin.1–6 In quantum dots the spin-orbit
coupling7–14 leads to decay of confined electron spin
polarization.15 Spin-orbit-coupled open quantum rings and
their arrays are studied in the context of the Aharonov-
Casher effect16,17 and other spin-related transport
phenomena18–21 as well in quantum gates design.5 Persistent
currents in closed semiconductor quantum rings attracted a
lot of theoretical attention22–31 and the interest in this field is
renewed by the recent observation of the magnetization pro-
duced by self-assembled quantum rings.32 The effect of spin-
orbit coupling on the magnetization, persistent spin, and
charge currents in closed quantum rings33–39 was extensively
studied within strictly one-dimensional approximations of
the ring confinement.

The spin-orbit interaction in semiconductor
nanostructures—although crucial for spin manipulation and
relaxation—has energetically weak effects. In particular for
quantum rings the spin-orbit coupling energy is by at least
two orders of magnitude smaller than the energy spacing
between the ground and the first-excited states of radial
quantization. This fact is usually accepted as a natural argu-
ment for strictly one-dimensional approximations33–40 in the
discussion of the spin-orbit coupling effects. The one-
dimensional models are based on an effective energy opera-
tor derived by averaging the actual Hamiltonian with the
ground-state radial wave function.39

In the present paper we perform a systematic exact diago-
nalization study of one and two electrons confined in two-
dimensional circular quantum rings in the presence of the
spin-orbit coupling due to the inversion asymmetry of both
the structure �Rashba coupling� and the crystal lattice
�Dresselhaus coupling�. The exact diagonalization results are
confronted with the ones produced by the lowest-radial-state
approximation, which turns out to introduce a number of

artificial effects in the spectra and charge densities of the
confined system, particularly when both spin-orbit coupling
types are present. The case of comparable contributions of
the Dresselhaus and the Rashba types of coupling is the one
for which persistent helical spin densities waves appear in
the two-dimensional electron gas.41,42

In the presence of spin-orbit coupling the stationary
states—even when confined in circular potentials—are no
longer orbital angular-momentum eigenstates. However,
when only a single type of the coupling—Rashba or
Dresselhaus—is present both the spin-up and spin-down
components of the wave function do have definite angular
momenta, and in consequence the spin and charge densities
retain the circular symmetry of the confinement potential.
When both types of the spin-orbit interaction are simulta-
neously present the spin densities lose the circular symmetry,
and thus a possibility of deviation of the charge density from
the circularity is also opened. Indeed such a pronounced de-
formation of the charge density was found in Ref. 34, in
particular for equal Rashba and Dresselhaus coupling con-
stants and in the absence of the Zeeman spin interaction. We
identify this result as an artifact of the lowest-radial-state
approximation. The deformation of the charge density is in-
deed found in two-dimensional rings but only in the presence
of the spin Zeeman effect and/or for nonzero but unequal
coupling constants. Moreover, the actual deformation occurs
in a perpendicular direction to the one predicted by the
lowest-radial-state approximation. We demonstrate that the
charge-density deformation distinctly influences experimen-
tally accessible ground-state properties including the chemi-
cal potential which determines the single-electron charging
of the ring43 and the magnetization32 produced by persistent
currents, especially for two electrons for which the deforma-
tion is radically enhanced by the Coulomb interaction.

II. THEORY

We consider a two-dimensional single-electron Hamil-
tonian with the magnetic field perpendicular to the plane of
confinement
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h = � p2

2m�
+ V�r��1 +

1

2
g�BB�z + HR + HD, �1�

where p=−i��+eA, the vector potential is taken in the sym-
metric gauge A=B�−y /2,x /2,0�, 1 is the identity matrix,
V�r� stands for the confinement potential, and HR and HD
introduce the linear Rashba and Dresselhaus spin-orbit inter-
actions. For x and y axes oriented parallel to �100� and �010�
crystal directions, respectively, the spin-orbit terms have the
form

HR = ��py�x − px�y�/� �2�

and

HD = ��px�x − py�y�/� . �3�

The two-dimensional Dresselhaus coupling constant �
= � �

d �2�3D depends on d—the thickness of the layer of con-
finement in the growth direction—and the bulk Dresselhaus
constant �3D. For the most popular value of GaAs bulk
constant44 �3D=27.5 eV Å3 and d=5 nm one has �
=10.8 meV nm, which is used below as the maximal realis-
tic value �for the alloyed InGaAs material constant �3D is
slightly increased45�. The value of the Rashba constant �
depends on the slope of the potential along the growth direc-
tion, which is partially defined by the growth conditions
�asymmetric doping or indium concentration profile� but can
be tuned by electrical gating,46 in particular to match the
Dresselhaus coupling constant for observation of the helical
spin-density waves.41,42

We consider a circular quantum ring potential

V�r� = − V0�exp�− �r/Ro��� − exp�− �r/Ri���� �4�

and apply parameters corresponding to etched
In0.1Ga0.9As /GaAs quantum rings:47 potential depth V0
=50 meV, electron effective mass m�=0.063m0, dielectric
constant �=13.125, and Landé factor g=−2.15. We assume
the outer and inner ring radii of Ro=60 nm and Ri=40 nm,
respectively. In Eq. �4� we apply parameter �=35, for which
the radial potential is close to a rectangular quantum well.

The spectrum for the single electron without spin-orbit
coupling is given in Fig. 1. The ground-state angular-
momentum transitions occur nearly ideally periodically,
which is a characteristic feature of nearly one-dimensional
rings. The magnetic period of the ground-state Aharonov-
Bohm oscillation is 0.565 T, which corresponds to a flux
quantum threading a strictly one-dimensional ring of radius
R1D=48.3 nm. In Fig. 1 more or less 25 meV above the
ground state we observe a branch of energy levels corre-
sponding to the first radial excitation.

For �=0 ��=0� Hamiltonian �1� commutes with the total
angular momentum J+ �J−� operator defined as J	=Lz	Sz,
where Sz= �

2 �z is the operator of the z component of the spin
and L=−i�1�r
�� is the orbital angular-momentum opera-
tor. For a single type of the spin-orbit coupling present the
single-electron Hamiltonian eigenstates are therefore of the
form

� = ��l↑�r�exp�il↑��

�l↓�r�exp�il↓�� � �5�

with l↓= l↑+1 for the Rashba and l↓= l↑−1 for the Dressel-
haus coupling. When both types of the spin-orbit coupling
are present the Hamiltonian still commutes with the s-parity
operator Ps= P�z, where P is the scalar parity operator
�Pf�r�= f�−r��. The spin-up and spin-down components of
the Hamiltonian eigenstates possess opposite parities.

The single-electron spin orbitals are found by diagonal-
ization of the Hamiltonian in a basis of multicenter Gaussian
functions48

� = 	
ks

cks
 �s exp
−

�r − Rk�2

2a2 +
ieB

2�
�xYk − yXk�� , �6�

where summation over k runs over centers of Gaussians Rk
= �Xk ,Yk�, s= 	1 and �s are eigenstates of the Pauli matrix
�z. In Eq. �6� integer  numbers the Hamiltonian eigenstates.
The imaginary term in the exponent is due to the magnetic
translation which ensures equivalence of all the centers in the
presence of the external magnetic field. The centers Rk are
distributed on a square array48 of 31
31 centers spaced by
�x=�y=5.2 nm. We use the basis function localization pa-
rameter a equal to the variationally optimal value of 5.7 nm.

The two-electron eigenproblem for the Hamiltonian H
=h�1�+h�2�+ �e2 /4���0r12� is diagonalized in the basis of
antisymmetrized products of operator �1� eigenstates,

� =
1
�2

	
�=1

K

	
=�+1

K

����1���2� − ���2���1�� . �7�

Convergence of the calculation up to 0.01 meV is usually
reached for K=22, and the present approach allows for in-
clusion of up to at least K=52 single-electron states. Typi-
cally, the difference between the two-electron energies as
calculated for 52 and 22 single-electron basis states is
smaller than 1 �eV. Discussion of the applicability of the
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FIG. 1. �Color online� Single-electron energy spectrum for the
ring defined by Eq. �4� without spin-orbit coupling. The red line
near the bottom of the plot shows the ground-state angular
momentum.
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multicenter basis to the two-electron problem is given in
Ref. 48.

III. RESULTS AND DISCUSSION

The presentation of the results is organized in the follow-
ing way. First we consider the single-electron states in the
absence of the Zeeman interaction �g=0�. We begin by the
case of a single type of the spin-orbit coupling present �Sec.
III A�, then we discuss the symmetry breaking as found in
the lowest-radial-state approximation for �=� �Sec. III B�,
the case of nonzero but not-equal coupling constants is dis-
cussed in Sec. III C. In Sec. III D the effects of the Zeeman
interactions are explained. The two-electron states are dis-
cussed in Sec. III E. Results for magnetization and chemical
potentials are provided in Sec. III F.

A. �=0, g=0,

Red �dashed� lines in Fig. 2�a� show the energy spectrum
for a single type of the spin-orbit coupling present—pure
Dresselhaus or pure Rashba case. In Fig. 2�b� we addition-
ally plotted the J quantum number �eigenvalue of the total
angular-momentum operator J	�, the average values of the
orbital angular momentum �both expressed in ��, and the z
component of the spin �in � /2 units�. Figure 2�b� was pro-
duced for the pure Rashba coupling—for the Dresselhaus
coupling J and L� values stay the same, but the average
value of the z component of the spin is inverted. With the
black lines in Fig. 2�a� we plotted the results of the analytical
formula18 for the pure Rashba coupling spectrum within the
one-dimensional approximation

El
s =

��0

2
�
�n� +

1

2
�2

+
1

4
� + s�n� +

1

2
��1 + ��R

�0
�2� ,

�8�

where �0=� / �m�r0
2�, �R=2� / ��r0�, n�= l+� /�0, l

=0, 	1, 	2, . . . and s= 	1 are the angular momentum and
spin quantum numbers, respectively, r0 is the effective radius
of the ring, � is the magnetic flux threading the ring, and �0
is the flux quantum. The results of Eq. �8� as given in Fig. 2
were obtained for r0=R1D=48.3 nm in consistence with the
average ring radius estimated above from the period of the
ground-state Aharonov-Bohm oscillation of Fig. 1. The re-
sults of the one-dimensional formula �8� were shifted on the
energy scale by −40.94 meV to coincide with the two-
dimensional results for B=0. As B grows the energy as ob-
tained in the two-dimensional model rise due to the diamag-
netic effect, absent for strictly one-dimensional rings.
Moreover, we notice that avoided crossings are opened in
the exact spectrum above the ground state. For instance near
B=2 T there is an avoided crossing between the second- and
third-excited energy levels, which both correspond to J
=−3.5 and differ by the majority-spin orientation �this can be
noticed by inspecting Sz� in Fig. 2�b� when they become
ground states, i.e., near 1.5 and 2.25 T, respectively�.

Formula �8� predicts no avoided crossings within the
spectrum, and those as found in the exact diagonalization are

due to the contribution of the excited radial states. In order to
illustrate this fact further we performed a reference calcula-
tion restricted to the lowest-radial state. The reference calcu-
lation was performed in the following way: �1� We diagonal-
ize the single-electron Hamiltonian excluding the spin-orbit
coupling. �2� We form a basis of the obtained eigenfunctions
selecting only those without zeroes outside the origin—thus
excluding the excited radial states. �3� The basis obtained in
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FIG. 2. �Color online� �a� Blue solid curves show the energy
spectrum for a single type of the spin-orbit coupling ��
=10.8 meV nm, �=0 or equivalently �=0, �=10.8 meV nm� for
g=0 as obtained by the present approach. The black lines show the
results given by the analytical formula Eq. �8� for a strictly one-
dimensional quantum ring shifted down on the energy scale by
−40.94 meV. The dashed red curves indicate the results obtained in
the lowest-radial-state approximation �see text� referred to the right
axis. �b� Solid blue and red dashed curves at the top of the plot
show the value of the average spin as obtained for the two-
dimensional quantum ring with the exact diagonalization approach
and with the basis restricted to the lowest radial state, respectively.
The black dotted line and the solid green line indicate the ground-
state total and orbital angular momentum, respectively. The black
solid line near the bottom of the plot shows the s parity of the
ground state. Pure Rashba coupling was applied for this figure ��
=10.8 meV nm, �=0�.
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this way is used for diagonalization of the full Hamiltonian
�1� including the spin-orbit coupling.

Results of the above procedure �lowest-radial-state ap-
proximation� were plotted in Fig. 2�a� with the dashed red
curve with respect to the right axis. These results are shifted
up on the energy scale by about 0.05 meV with respect to the
exact result �mind the shift of the left and right energy
scales�, and the avoided crossings present in the exact spec-
trum are closed. In both the lowest-radial approximation and
the exact calculation in the ground state one obtains only
crossings of energy since the subsequent ground states cor-
respond to different total angular momentum J quantum
numbers �see Fig. 2�b��. With each J transformation �ground-
state level crossing� we observe a reorientation of the aver-
age spin �see the blue line in Fig. 2�b��. We notice that the
strict periodicity of the ground-state symmetry transforma-
tions as given by the one-dimensional formula �8� is per-
turbed at higher magnetic fields in the exact diagonalization
spectrum. The Rashba interaction promotes ground states
with spin-up orientation51 and enlarges their ground-state sta-
bility range at the magnetic field scale at the expense of the
spin-down oriented ground states. The magnetic fields for
which the ground-state crossings are obtained in the lowest-
radial-state approximation coincide with the ones produced
by the analytical formula �see Fig. 2�a�� and the strict peri-
odicity of the average spin oscillation is conserved �see the
red dashed line in Fig. 2�b��.

For strictly one-dimensional rings the energy spectrum
and the ground-state properties are ideally periodic with or
without the spin-orbit coupling. For the two-dimensional
ring considered here the ground-state angular-momentum
transitions without the spin-orbit coupling appear nearly ide-
ally periodically on the magnetic field scale �Fig. 1�. The
spin-orbit coupling destroys this periodicity �see the orbital
angular momentum and the spin oscillation plotted with the
blue line in Fig. 2�b��. The periodicity is reproduced within
the lowest-radial-state approximation �see the red dashed line
for the average spin plotted in Fig. 2�b�� and not by the
unrestricted basis.

We find that the first-excited state of the radial quantiza-
tion contributes mostly to the minority-spin component of
the ground-state wave function and we observe a shift of the
maximum of the minority-spin density to a larger distance of
the ring center with respect to the maximum of the majority-
spin density �see Fig. 3�. This shift is naturally overlooked by
the lowest-radial-state approximation.

B. �=�, g=0

Figure 4 shows the spectrum as obtained for �=�
=10.8 meV nm with the exact approach �blue solid curves�
and with the basis restricted to the lowest-radial-state �red
dotted curves� shifted down by 0.088 meV. For equal cou-
pling constants both the exact and approximate energy levels
are twofold degenerate. The restricted basis produces
avoided crossings between the two lowest-energy levels and
the rest of the spectrum �near B=0, 0.6, 1.2 T, etc.�. The
results obtained with the unrestricted basis do not contain
any avoided crossings.

Figure 4�b� shows the ground-state charge density calcu-
lated as a function of the angle along the circumference of
the ring for r=50 nm in the presence of the magnetic field of
0.75 T. We can see that the restricted basis produces defor-
mation of the charge density, with no counterpart in the exact
result. In Fig. 5 we additionally plotted the charge and spin
densities for the odd s-parity ground state49 at B=0.75 T, as
obtained in the lowest-radial-state approximation �Fig. 5�a��
and by the exact diagonalization �Fig. 5�b��. Although the
spin densities in the approximate and exact results similarly
deviate from the circular symmetry, in the exact result they
are distributed in a way that their sum is exactly circularly
symmetric, which is not reproduced in the restricted basis
�Fig. 5�a��.

We found that the deviation of the charge density from
circular symmetry that occurs due to the spin-orbit coupling
has an elliptic character, i.e., the charge density is symmetric
with respect to both the diagonal line x=y �crystal direction
�110�� and the antidiagonal line y=−x �crystal direction

�11̄0��. In consequence the charge density acquires extremal
values on the crossing of the average ring radius and the
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FIG. 3. �Color online� Spin-up �red curves� and spin-down den-
sities �blue curves� as obtained in the ground-state for B=0.6 T �a�
and B=0.4 T �b� for the pure Rashba coupling and g=0 �param-
eters of Fig. 2�. The dashed vertical lines show the positions of the
maxima of the majority and minority-spin distributions. The black
solid lines show the confinement potential.
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symmetry axes. Therefore, in order to quantify the elliptic
deformation of the charge density we use a parameter

� =
����/4��2 − ���2�

���2�
, �9�

where ���2� is the average electron density calculated over
the angle along the circumference of the ring at a distance of
50 nm of its center, and ���� /4��2 is the value obtained for
the angle � /4, i.e., in point of Cartesian coordinates x=y
=35.33 nm �see Fig. 5�. The � values as obtained with the
restricted and unrestricted bases are plotted at the lower part
of Fig. 4�a�. In the lowest-radial-state approximation the pa-

rameter is negative �one obtains density minima at �110� di-
rection�, and the strongest deformation is obtained near the
ground-state-symmetry transformations—at odd multiples of
half of the flux quantum. In the discussed case of equal cou-
pling constants and g=0 the unrestricted basis produces ide-
ally circular results and parameter � is found equal to zero.

The effects found in the basis restricted to the lowest ra-
dial state, i.e., the opening of the avoided crossings in the
energy spectrum �Fig. 4�a�� and the charge-density deforma-
tion �Figs. 4�b� and 5�a��, including the orientation of the
charge-density maxima on the antidiagonal of the ring �y
=−x line� agree with the results of the one-dimensional
model presented in Fig. 7�a,b� of Ref. 34 obtained for �=�
and g=0. However, none of these results is reproduced by
the unrestricted basis �see Figs. 4�a� and 5�b��. These effects
turn out to be artifacts of the basis restricted to the lowest
radial state. In fact, both the appearance of the avoided cross-
ings in the energy spectrum and the charge-density deforma-
tion are excluded by the intrinsic symmetry of the Hamil-
tonian �1� present for �=� and g=0 as pointed out in Ref. 2.
For �=� and g=0 �i� the Hamiltonian commutes with
�x−�y operator.2,50 �ii� The spin-orbit coupling shifts down
the entire spectrum by a constant value 2�2m� /�2. �iii� The
charge density for each of the Hamiltonian eigenstates is not
affected by the spin-orbit coupling.

The results presented above for the nonrestricted basis
exactly reproduce all the above features including the con-
stant downshift of the spectrum �for �=10.9 meV nm equal
to 0.19 meV—the spectrum without spin-orbit coupling is
plotted with the black dotted lines in Fig. 4�a��.

For �=� and g=0 the circular symmetry of the charge
density results from the intrinsic symmetry of the Hamil-
tonian and its deformation is excluded independent of the
thickness of the ring. In consequence there does not exist a
ring thickness w small enough for which the exact results
could reproduce the deformation of the charge density pro-
duced by the lowest-radial-state approximation. In other
words, the limitation of the basis to the lowest radial state
does not become a good approximation even in the limit of
small w, although the energy spacing between the lowest-
energy and first-excited state diverge as 1 /w2, which seems
quite counterintuitive. A related fact—a nonvanishing contri-
bution of the excited Landau levels in the infinite magnetic
field limit of spin-orbit coupled quantum dots for g=0—was
recently indicated in Ref. 51.
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FIG. 4. �Color online� �a� Blue solid curves show the spectrum
for �=�=10.8 meV nm and g=0 as obtained with the unrestricted
basis. Red dotted curves indicate the results of the lowest-radial-
state approximation shifted down on the energy scale by 0.088
meV. The black dotted curves show the results for the spin-orbit
coupling excluded. The dashed lines show the parameter � charac-
terizing deviation of the charge density from the circular symmetry
�Eq. �9��, as obtained by the exact diagonalization �blue line� and
with the lowest-radial-state approximation �red line�. �b� Charge
density obtained for B=0.75 T plotted along the center of the ring
r=50 nm as obtained by the exact diagonalization �blue curve� and
with the basis restricted to the lowest radial state �red line� for the
ground state of odd s parity.
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C. �Å�, g=0

When both coupling types are present but nonequal, there
does not exist a direction in which the spin component would
commute with the Hamiltonian, and in general energy levels
in the external magnetic field are nondegenerate. The spec-
trum for �=5.4 meV nm and �=10.8 meV nm is plotted in
Fig. 6—the blue curves show the exact results and the dotted
red ones indicate the results obtained with the basis restricted
to the lowest radial state shifted down by 0.057 meV. In the
ground state we observe regular s-parity transformations
�Fig. 6�b�� like in the case of pure Rashba coupling of Fig. 2.
However, the total angular momentum is no longer quantized
in the Hamiltonian eigenstates �Fig. 6�b��. Since the consid-
ered case corresponds to the dominant Dresselhaus coupling

the J− average values are closer to the stepwise dependence
observed for a single coupling type present of Fig. 2 than J+.
Also, since the Dresselhaus coupling dominates—the stabil-
ity of spin-down ground states is observed at high field, like
in the case of parabolic quantum dots.51

Let us now focus our attention on the first ground-state
transformation observed near 0.25 T. For the pure and weak
Dresselhaus coupling53 one obtains here a crossing of spin-
down l=0 eigenstate and spin-up l=−1 energy levels. Both
these levels correspond to odd s-parity symmetry; however
there is no avoided crossing between them since they corre-
spond to different quantum numbers J−=1 /2 and J−=−3 /2
�opposite spin orientation� before and after the crossing, re-
spectively. For nonzero Rashba coupling accompanying the
dominant Dresselhaus coupling that is considered in Fig. 6
the drop of J− value from about 1 /2 to about −3 /2 near 0.25
T is continuous since the two energy levels enter into a nar-
row avoided crossing. The actual crossings in the spectrum
are obtained only when the ground-state s-parity changes
�see Fig. 6�b�� and they are accompanied by jumps in the
average value of J−. For instance near B=2.75 T there is a
ground-state crossing and for B=3.1 T—an avoided cross-
ing occurs �see Fig. 6�a��. The ground-state energy-level an-
ticrossings are overlooked by the lowest-radial-state approxi-
mation �see the red dotted lines in Fig. 6�a��.

The deformation of the ground-state charge density as ob-
tained by the exact diagonalization occurs only near the
ground-state avoided crossings and becomes more pro-
nounced at higher field—see the deformation parameter �
plotted in Fig. 6�a� with the blue dashed line. The exact value
of the deformation parameter is a few times smaller than the
one obtained in the lowest-radial-state approximation. More-
over, a detectable elliptical deformation of the charge density
in the exact result is only obtained for finite magnetic field,
while in the lowest-radial-state approximation the parameter
� takes a nonzero value already at B=0. Parameter � as
obtained by the exact diagonalization occasionally acquires
positive sign, opposite to the one obtained in the lowest-
radial-state approximation. Then, the maxima of the charge
density as calculated by the exact diagonalization appear on
the diagonal line x=y, while in the lowest-radial-state ap-
proximation charge-density minima are found on the antidi-
agonal x=−y. The exact and approximate charge densities
are plotted in the inset to Fig. 6 for B=3.77 T, when a maxi-
mal deformation is obtained in the exact calculation.

For a ring of smaller width the results of the lowest-
radial-state approximation should be closer to the exact ones.
In order to verify this expectation we considered a ring with
the inner radius Ri=55 nm and the outer one Ro=60 nm
with potential depth V0=200 meV. The ground-state
avoided crossing becomes too thin to be observed �see Fig.
7�. The spectrum in the lowest-radial-state approximation be-
comes nearly identical to the exact one with the exception of
a constant variational overestimate of about 0.067 meV and
an artificial energy gap opened near −281.8 meV. The
ground-state spin oscillation as calculated in the unrestricted
basis retains its periodicity in the considered magnetic field
range �Fig. 7�b��. A pronounced difference is still found in
the confined charge density. The deformation of the exact
charge density disappears with narrowing of the ground-state
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FIG. 6. �Color online� �a� The blue solid and the red dotted
curves show the spectrum as calculated for �=� /2=5.4 meV nm
with the unrestricted basis and in the lowest-radial-state approxima-
tion, respectively. The dashed curves indicate the value of the �
parameter as calculated by the exact �blue� and restricted �red�
bases. The inset shows the ground-state charge density for B
=3.77 T along the circumference of the ring as obtained by the
basis restricted to the lowest radial state �red curve� and for unre-
stricted basis �blue curve�. �b� The black line at the top of the plot
show the average value of the z component of the spin, the blue and
red lines the average values of the J− and J+ total angular-
momentum operators, and the green line near the bottom of the plot
the ground-state s-parity obtained in the exact calculation.
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energy-level crossings and becomes too weak to be observed
�inset to Fig. 7�, while the deformation obtained in the
lowest-radial-state approximation not only remains, but is
increased by a factor of 50% with respect to the case of Fig.
6 �see the deformation parameters in Figs. 6�a� and 7�a��. In
the context of the charge-density deformation the results of
the lowest-radial-state approximation do not really become
closer to the results of the exact diagonalization in the limit
of small ring width.

D. g=−2.15

The spin Zeeman effect for perpendicular magnetic field
introduces �z operator into the Hamiltonian. With the Zee-
man effect and the spin-orbit coupling present there does not
exist any spin component whose operator would commute
with the Hamiltonian even for �=�, which lifts the hidden
symmetry of the Hamiltonian2 discussed above. The spec-
trum for g=−2.15 and �=�=10.8 meV nm is plotted in Fig.
8�a�. We can see that two lowest-energy levels separate from
the rest of the spectrum and the ground state undergoes
s-parity oscillations �see Fig. 8�c�� in the external magnetic
field. The Zeeman effect promotes the spin-up orientation

�Fig. 8�c�� at high field. The charge density distinctly devi-
ates from the circular symmetry �cf. deformation parameter
plotted in Fig. 8�a��. The deformation parameter takes on
maximal values at the ground-state s-parity transformations
and it stays positive above 2.5 T �see Fig. 8�b��, i.e., with
charge-density maxima localized on the diagonal of the
ring—see Fig. 9 for B=2 T. The maximal value of � param-
eter at the ground-state s-parity transformations implies that
the deviation from the circular symmetry is stronger in the
excited state than in the ground-state—see Fig. 9.

0 1 2 3 4
B [T]

-282

-281.6

-281.2

E
[m
eV
]

-0.15
-0.1
-0.05
0
0.05

pa
ra
m
et
er

ρ

0 0.5 1 1.5 2
φ [π]

ch
ar
ge
de
ns
ity

[a
rb
.u
ni
ts
]

0 1 2 3 4
B [T]

-1
0
1

s-
pa
rit
y -10

-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1

<J
+>
,<
J -
>

-1
0
1

<S
Z>

(a)

0
1
2
3
4
5

→ →

←

←
(b)

basis restricted to the lowest radial state
unrestricted basis − → − →

FIG. 7. �Color online� Same as Fig. 6 but for a ring of four times
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meV.
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FIG. 8. �Color online� �a� Black curves show the energy spec-
trum as calculated by the exact diagonalization for �=�
=10.8 meV nm and g=−2.15. The red symbols show the deforma-
tion parameter �, which in wider B range is presented also in panel
�b�. �c� The black curve at the top of the plot shows the ground-state
average value of the spin component, the red curve presents the
average orbital angular momentum and the plot at the bottom of the
plot indicates the s parity.
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For �=�=0 the electron density remains circular, no
avoided crossings are observed in the spectrum of definite
orbital angular momenta �see Fig. 10�a��, and a complete
ground-state spin polarization is observed for any nonzero B.

The energy spectrum, the ground-state spin, orbital angu-
lar momentum, and s parity are presented in Fig. 11 for non-
equal and nonzero coupling constants, namely, for �=� /2
=5.4 meV nm. The results qualitatively agree with the ones

obtained for �=� in Fig. 8. In particular, an energy gap
between two lowest-energy states of opposite parities and the
rest of the spectrum is opened and maximal deformation of
the electron density is found at the ground-state s-parity
transformations. However, the � parameter is no longer con-
tinuous at the symmetry transformations �cf. the case of �
=� of Fig. 8�a��

For one of the coupling constants equal to zero either J+
or J− operator commutes with Hamiltonian, hence no defor-
mation of the electron density is found, and the energy spec-
trum �Fig. 12� does not contain any energy gap between two
lowest-energy levels and the rest of the spectrum—in con-
trast to Figs. 8 and 11.

E. Two confined electrons

Figure 13�a� shows the two-electron spectrum for g=0 in
the absence of the spin-orbit coupling. The magnetic period
of the ground-state transitions is halved22 with respect to the
single-electron case �compare Figs. 1 and 13�. Figure 13�b�
presents the spectrum for the highly symmetric spin-orbit
coupling of �=�=10.8 meV nm. In Fig. 13 the two-electron
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spectrum is only shifted down by the spin-orbit coupling by
the energy of 0.38 meV, which is twice the value of the shift
2��2m� /�2� for a single electron �see Sec. III B�. No other
difference is found between the spectra presented in Figs.
13�a� and 13�b�. The invariance of the spectrum although due
to the symmetry of the Hamiltonian, in the exact diagonal-
ization calculation is only reproduced by a fully convergent
two-electron basis, which illustrates the strength of the
present numerical approach.

In the absence of the spin-orbit coupling, in two-electron
quantum rings as well as in quantum dots the ground-state
spin triplets �singlets� correspond to odd �even� orbital angu-
lar momenta, and the ground-state total spin quantum num-
ber oscillates between 0 and 1 in the external magnetic field.
When the Zeeman effect is included the spin oscillations
vanish at higher field and the state with spins polarized par-
allel �g�0� to the magnetic field vector is established as the
ground state. This spin-up polarized ground state of the odd
orbital angular momentum corresponds to the odd s-parity
symmetry. The even and the odd s-parity energy levels for
g=−2.15 are plotted in Fig. 14�a� for �=�=0 with the red
and blue curves, respectively. Note that the Zeeman effect
lifts the fractional22 Aharonov-Bohm oscillation for two con-
fined electrons and leaves an integral period shifted by half
of the flux quantum with respect to the single-electron oscil-
lation. For �=�=10.8 meV nm �see Fig. 14�b�� the ground-
state crossings—which for �=�=0 are due to the orbital
angular-momentum transitions—are replaced by avoided
crossings between the odd s-parity energy levels. Opening of
avoided crossings is more evident for a case of a weaker
spin-orbit coupling �=�=5.4 meV nm presented in Fig.
14�c�.

In Fig. 15 the two-electron ground-state charge and spin
densities for B=4 T are presented for �=�=10.8 meV nm.
The left column of plots �Figs. 15�a� and 15�c�� corresponds
to g=0, the right column to g=−2.15 �Figs. 15�b� and 15�d��.
In the upper row of plots �Figs. 15�a� and 15�b�� the electron-
electron interaction is neglected and it is included in the
lower row of plots �Figs. 15�c� and 15�d��. For g=0 both the
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spin and charge density remain circularly symmetric. In the
case of single-electron s-parity eigenstates the spin-up and
spin-down densities were noncircular although their sum re-
produced the circular symmetry �Fig. 5�b��. For a single elec-

tron ��=�, g=0� the ground state is twofold degenerate with
interchanged spin densities for the odd and even s-parity
ground states. For two confined electrons one of them occu-
pies the odd s-parity state and the other the even s-parity
state. The two-electron ground state is therefore nondegener-
ate and the spin densities sum up to a circularly symmetric
distribution. For nonzero g, and �=� the two-electron
ground-state density—even without the electron-electron
interaction—is more strongly deformed than the single-
electron ground-state density. This is because in the first-
excited single-electron state—which is also occupied in the
two-electron ground state—the elliptic deformation is stron-
ger than in the single-electron ground state. Moreover the
single-electron ground state and the first-excited state pos-
sess charge-density maxima at the same y=x line �see the
maximal value of the deformation parameter at the ground-
state symmetry transformations presented in Fig. 8�a��. The
electron-electron interaction makes the elliptic deformation
of the charge density even stronger �cf. Figs. 15�b� and
15�d��.

The elliptic deformation parameter � for two electrons
and g=−2.15 is plotted in Fig. 16. The blue curves corre-
spond to �=�=10.8 meV nm with �solid curve� and without
�dashed curve� electron-electron interaction. The electron-
electron interaction strongly enhances the elliptic deforma-
tion of the charge density particularly at odd multiples of half
quantum �0.565 T�, which correspond to crossings of triplet
states in the absence of the spin-orbit coupling �see Fig.
14�a��. The black line in Fig. 16 shows the result obtained for
�=� /2=5.4 meV nm �electron-electron interaction in-
cluded�. Dependence of the parameter � on the magnetic
field is very similar to the one found for equal coupling
constants.

F. Magnetization and single-electron charging properties

Theoretical analysis of the spin-orbit coupling effects pre-
sented above required discussion of the special case of g
=0. For the experimentally relevant quantities we limit the
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discussion to the case of negative Landé factor specific to
InGaAs structures.

Figures 17 and 18 show the magnetization �M =− dE
dB � pro-

duced by a single and two electrons. Figure 17 presents the
case of pure Rashba and pure Dresselhaus coupling as com-
pared to the results obtained without the spin-orbit interac-
tion. For B�2 T the magnetization for both pure Rashba
and pure Dresselhaus interactions acquire the same periodic-
ity as in the absence of spin-orbit coupling only the magnetic
fields for which the discontinuities appear �due to the
ground-state total angular-momentum transitions� are
slightly shifted to lower �for Dresselhaus coupling� or higher
�for Rashba coupling� values.

For both coupling constants nonzero the magnetization
discontinuities result from the s-parity transformations. For a
single electron the magnetization dependence on the mag-
netic field �see upper panel of Fig. 18� is similar to the one
presented in Fig. 17 for a single type of spin-orbit coupling
present. A qualitatively different result between the case of a
single and both types of spin-orbit coupling present is ob-
tained for two confined electrons �cf. lower panels of Figs.
17 and 18�. For both coupling constants nonzero the ground
state already for relatively weak magnetic field becomes per-
manently s-odd and the ground-state crossings due to the
s-parity transformations disappear of the ground-state energy
level �see Figs. 14�b� and 14�c��. In consequence the two-
electron magnetization becomes a continuous function of the
magnetic field, in contrast to both the case of �=�=0 and a
single type of the spin-orbit coupling present. We also ob-
serve that the amplitude of the magnetization oscillations is
reduced when both spin-orbit coupling types are present
�Fig. 18�. This reduction results from hindered circulation of
the persistent currents around the ring due to appearance of
the charge-density minima. The magnetization reduction is
slight for a single electron and more pronounced for two
electrons, in accordance with the relative strength of the el-
liptic deformation for one and two confined electrons.

In the single-electron charging experiments43 the quantum
rings embedded in a charge tunable structure are occupied by
subsequent electrons when the chemical potentials of
N-electron system is aligned with the Fermi energy of the
electron reservoir. The chemical potential is defined as �N
=EN−EN−1, where EN stands for the ground-state energy of N
confined electrons. The chemical potentials for one- and two-
electron systems are plotted in Fig. 19 for a single type of
spin-orbit coupling and in Fig. 20 for nonzero values of both
� and � coupling constants. The single-electron chemical
potential depends on the magnetic field in a qualitatively the
same manner in all the cases considered in Figs. 19 and 20.
A qualitative difference is obtained for two electrons. The
chemical potential for N=2 without the spin-orbit coupling
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has cusps �discontinuous derivatives� whenever the ground-
state symmetry transformations occur for one or two elec-
trons. The ground-state symmetry transformations for N=1
result in V-shaped cusps and the transformations for N=2 in
�-shaped cusps. In Fig. 20 we notice that when both spin-
orbit coupling types are present the �-shaped cusps in �2 are
replaced by smooth maxima, which is related to the avoided
crossings between s-odd-parity energy levels that are opened
in the low part of the energy spectrum �Figs. 14�b� and
14�c��.

Both the magnetization and the chemical potential as pre-
sented in Figs. 17–20 indicate that the case of two electrons
for both spin-orbit coupling types present differs qualita-
tively from the case when a single or no type of spin-orbit
coupling is present. Above we demonstrated that for

g=−2.15 when both coupling constants are nonzero the
ground-state electron density is subject to an elliptical defor-
mation. For a single type of spin-orbit coupling present as
well as in the absence of the spin-orbit coupling no elliptical
deformation is found. Magnetization and chemical potential
as obtained for two electrons and both spin-orbit coupling
types present have qualitatively the same dependence on the
magnetic field as the one found recently for a circular quan-
tum ring with two symmetrically placed repulsive defects52

in the absence of the spin-orbit coupling. Figure 15�c� of
Ref. 52 shows that the �-shaped cusps disappear of the two-
electron chemical potential, and Fig. 16�c� of the same work
demonstrates that the two-electron magnetization becomes a
continuous function of the magnetic field when the ground
state acquires the odd spatial parity for stronger magnetic
field. Reference 52 also demonstrates that for a single elec-
tron confined in a circular ring with two symmetrically
placed defects, both the chemical potential and the magneti-
zation remain qualitatively the same as for the clean—
circular quantum ring—due to the spatial parity ground-state
transformations replacing the angular-momentum transitions
for the clean ring. Therefore, at least for one and two elec-
trons, the elliptical deformation of the charge density, which
is found in a circular ring when both spin-orbit coupling
types are present, results in the same consequences for both
the charging and the magnetic properties of the ring as an
elliptical perturbation of the circular quantum ring potential
in the absence of the spin-orbit coupling.

IV. SUMMARY AND CONCLUSIONS

We have performed a systematic exact diagonalization
study of spin-orbit coupling effects for one and two electrons
confined in a circular quantum ring of finite width. We dis-
cussed validity of one-dimensional models assuming that the
radial functions of confined carriers can be identified with
the lowest-energy radial state as obtained without the spin-
orbit coupling. For a single type of spin-orbit coupling
present the lowest-radial-state approximation overlooks
rather secondary effects: �i� some avoided crossings that ap-
pear in the excited part of the spectrum, �ii� nonideal period-
icity of the ground-state oscillation of the average spin ob-
tained for g=0, and �iii� relative radial shifts of the majority
and minority-spin densities. The performance of the lowest-
radial-state approximation is worse when both Rashba and
Dresselhaus coupling types are present. In that case the
lowest-radial-state approximation produces charge densities
which differ qualitatively from the exact ones. In particular
for equal coupling constants in the absence of the Zeeman
effect the basis restricted to the lowest radial state produces
charge densities with artifactally broken circular symmetry,
which at least for some applications excludes the usage of
the one-dimensional models when Dresselhaus and Rashba
spin-orbit interactions are simultaneously present. We have
demonstrated that the charge density as obtained by the exact
diagonalization deviates from the circular symmetry only
when the Zeeman effect is present or when the coupling
constants are nonequal. The elliptical deformation of the
single-electron density that is found by the exact diagonal-
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ization is generally weaker than in the lowest-radial-state ap-
proximation and with a different orientation of the density
maxima. Moreover, the actual elliptic deformation of the
charge density is only obtained for finite magnetic fields,
while in the lowest-radial-state approximation the deforma-
tion is already found at B=0. We have considered signatures
of the charge-density deformation on experimentally relevant
quantities. We have found that the elliptical deformation of
the charge density that appears due to the interplay of the
spin-orbit coupling and the Zeeman effect has similar conse-
quences for the magnetization and charging properties of the
ring as an elliptical deformation of the circular quantum ring

confinement potential in the absence of the spin-orbit cou-
pling.
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Electron transport through a spin-orbit-coupled quantum ring is investigated within linear response theory.
We show that the finite width of the ring results in the appearance of Fano resonances in the conductance. This
turns out to be a consequence of the spin-orbit interaction that leads to a breaking of the parity of the states
localized in the ring. The resonances appear when the system is close to maxima of Aharonov-Casher conductance
oscillations where spin transfer is heavily modified. When the spin-orbit coupling strength is detuned from the
Aharonov-Casher maxima the resonances are broadened resulting in a dependence of the spin transport on the
electron Fermi energy in contrast to predictions from one-dimensional models.

DOI: 10.1103/PhysRevB.84.235319 PACS number(s): 73.23.Ad, 73.63.Nm

I. INTRODUCTION

Electrical manipulation of spin polarization of carriers
is one of the key elements for semiconductor spintronics
devices. Since the proposal of the spin-field-effect transistor
by Das and Datta1 particular attention has been addressed
to Rashba spin-orbit (SO) coupling.2 This interaction—a
relativistic consequence of the presence of the electric field
within the device—produces an effective magnetic field3

for the moving electrons which makes their spins precess.
The Rashba coupling has been successfully implemented in
quantum devices that operate on an electron spin through the
control of voltages applied to the electrodes in the system, such
as quantum gates4 and valves.5

Proposals of spin-operating devices concern also spin-orbit-
coupled quantum rings as a realization of universal quantum
gates,6 spin beam splitters,7 or spin filters.8 The electron trans-
fer through quantum rings involves both the spin precession
due to the SO interaction and the quantum interference effects
related to Aharonov-Bohm9,10 and Aharonov-Casher (AC)
effects.11 The latter spin-interference effect12,13 results from
the fact that the relative phase shifts for the wave function
passing through both arms of the ring are spin dependent in the
presence of SO interaction. The AC oscillations were probed
experimentally in a HgTe single quantum ring,14 in a single15

and in an array of InGaAs quantum rings,16 or in an array of
Bi2Se3 topological insulator quantum rings.17

Although the theoretical work on SO-coupled quantum
rings is rich, it is based mostly on the idealized case of a ring
with infinitesimal narrow channels, i.e., the one-dimensional
approximation. This approach allowed one to obtain analytical
description of charge18 and spin6 transport through the ring
as function of the electron Fermi energy and the Rashba
SO coupling strength. Theoretical studies concerning two-
dimensional channels showed however that for an accurate
description of transport through the spin-orbit-coupled ring,
the finite width of the channels cannot be neglected.13,14,19

This is mainly due to the fact that for a finite-width ring the
spin is no longer well defined. Nonetheless, full calculations
are rather scarce. A ring with two-dimensional channels has
been studied within a tight-binding formalism in Ref. 13 or

in the framework of the scattering matrix method in Ref. 20.
Reference 19 investigated the transport within the multiband
Landauer-Büttiker formalism. This was later extended to
describe the experimental data obtained in the presence of
an external magnetic field.14

In this paper we develop a calculation scheme that allows
us to study spin transport through a SO-coupled ring with
two-dimensional channels. We show that the finite width
of the channels along with SO interaction results in the
appearance of Fano resonances in the conductance around the
AC oscillation maxima. These sharp peak-dip structures have
been previously studied in the presence of an external magnetic
field, where they were the result of the broken symmetry of
states localized in the ring,21 in systems of a quantum ring
coupled to a quantum dot,22 or in one-dimensional quantum
rings containing impurities23 and magnetic structures.24 Here
we find that the Fano resonances originate from the coupling
of the transmitted electron with the resonance states localized
in the ring that have broken parity as a consequence of the SO
interaction.

We find that in the resonance region the spin transport
through the ring is strongly modified. We argue that the
modification is caused by the coupling of the electron spin
with the spin of the resonance states which is revealed
by the application of an external magnetic field. When the
SO coupling strength is detuned from the AC oscillation
maxima the Fano resonances are broadened which results in a
dependence of the spin transport on the electron Fermi energy.
This particular result was not present in previous studies
on spin transformations in one-dimensional rings6 and is of
importance for spintronics devices based on SO-coupled rings.

II. THEORY

A. System

We consider a system described by the effective mass
Hamiltonian

H =
(

h̄2k2

2m∗ + Vc(r)

)
1 + 1

2
gμBBσz + HSIA, (1)

235319-11098-0121/2011/84(23)/235319(8) ©2011 American Physical Society
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FIG. 1. (Color online) (a) The contour of the confinement
potential of the ring and the leads shown by the black curves. The
region where Rashba coupling is present is marked with blue color.
The dashed thick lines in the leads present the closed system of
leads with length L used to obtain the energies of the localized states
(see text). (b) Function f (y) that controls the spatial presence of
the Rashba coupling. (c) Dispersion relation in the lead obtained for
B = 0.5 T.

where Vc(r) defines the confinement potential of the ring (with
outer radius Ro = 152 nm, inner radius Ri = 88 nm, and mean
radius R = 120 nm) and the leads, both with channel width
W = 64 nm. We adopt a hardwall potential with Vc = 0 inside
the channels and Vc = 200 meV outside (effectively an infinite
barrier). The contour of the confinement potential is depicted
in Fig. 1(a) by the black curve.

The kinetic momentum operator is k = −i∇ + eA
h̄

. We
include magnetic field B directed perpendicular to the plain of
the device. We choose the Lorentz gauge A = (Ax,Ay,0) =
(0,Bx,0).

We include Rashba SO interaction with the Hamiltonian
HSIA = α∇V · (σ × k) resulting from the electric field felt by
the propagating electron. In order to allow for a well-defined
spin in the leads we assume that the Rashba coupling is present
solely in the ring area by applying the electric field only therein.
Experimentally this is realized15 by applying a voltage between
the substrate and a gate that is restricted to the ring area.

In the considered two-dimensional system we describe
the potential that enters the Rashba Hamiltonian HSIA

by V (x,y,z) = Vc(x,y) + |e|Fzzf (y). We include inhomoge-
neous electric field Fz(y) ≡ Fzf (y) that controls the coupling
strength. In Fig. 1(a) in the blue region the electric field is
approximately equal to Fz. The function that controls Fz(y) has
the form f (y) = 1/π2[arctan(y − y1) + π/2][− arctan(y −
y2) + π/2], where y1 = 200 nm and y2 = 500 nm; see
Fig. 1(a). The function is nearly steplike. We depict f (y) by
the blue curve in Fig. 1(b). Finally, we obtain the Rashba
operator for the electric field in the growth direction that
depends on the y position [we neglect the derivatives of Vc(r)
as the wave function disappears in the proximity of the edges
of the confinement potential]:

HSIA = α|e|Fzz
∂f (y)

∂y
(σzkx − σxkz)

+α|e|Fzf (y)(σxky − σykx). (2)

We average over the z direction assuming that the electron
is in the ground state for motion in the vertical excitation
(〈z kz〉 = 1

2 i), obtaining

HSIA = − iα|e|Fz

2

∂f (y)

∂y
σx + α|e|Fzf (y)(σxky − σykx).

(3)

Note that the first term in the latter equation guarantees that
the two-dimensional Rashba Hamiltonian is Hermitian when
the strength of the coupling is varied along the y direction.
In this way we avoid artificial symmetrization needed in the
previous work with nonhomogeneous Rashba coupling.25

We employ material parameters for In0.5Ga0.5As alloy, i.e.,
m∗ = 0.0465m0, g = −8.97. The Rashba coupling parameter
α = 0.572 nm2 is adopted from Ref. 26.

B. Lead eigenstates

We use a finite-difference approach with Hamiltonian
Eq. (1) discretized on a grid with �x = �y = 4 nm, em-
ploying gauge-invariant discretization of the kinetic energy
operator for each of the spinor � components:

h̄2k2

2m∗ �i,j = h̄2

2m∗�x2
(4�i,j − Cy�i,j−1 − C∗

y�i,j+1

−Cx�i−1,j − C∗
x�i+1,j ), (4)

where �i,j = �(xi,yj ), Cy = exp[−i e
h̄
�xAy] =

exp[−i e
h̄
�xBx], and Cy = exp[−i e

h̄
�xAx] = 1. The

derivatives in the SO Hamiltonian (3) are discretized
straightforwardly.

We obtain the asymptotic states in the leads far away from
the ring (i.e., for y = 0), where [−ih̄ ∂

∂y
,H ] = 0 and the spinor

of propagating wave can be written as

�(x,y) = eiky

(
�k

↑(x)

�k
↓(x)

)
. (5)

We insert this form of the spinor in the discretized Hamil-
tonian (1) and obtain a one-dimensional eigenproblem for
transverse quantization in the lead. We plot the dispersion
relation in Fig. 1(c). The energies of the (split by the Zeeman
energy 2Ez) spin-up and spin-down states are plotted with the
red and blue curves, respectively.
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In the present work we consider the range of Fermi energies
such that Ef lies below the energy of the third subband [the
dashed red curve in Fig. 1(c)]. In this case there are four
possible values of the electron wave vector for a given electron
Fermi energy. It can either belong to the lowest subband having
k↑ or −k↑ and spin oriented along the z direction or belong
to the second subband having k↓ or −k↓ and spin oriented
antiparallel to the z direction.

We solve the transport problem through the solution of
the stationary Schrödinger equation H� = E� assuming
boundary conditions such that the electron enters the system
from the bottom electrode and can either be backscattered or
be transmitted through the system. Details on the boundary
conditions and on the approach applied to solve the transport
problem can be found in the Appendix.

Unless stated otherwise in the calculations we lift the spin
degeneracy of the states in the leads by applying a residual
magnetic field with B = 0.1 mT, which does not induce any
observable orbital effects.

III. RESULTS

A. Fano resonances

Let us start with the case of no SO coupling. In the ring
there are two types of localized states: states with positive
and negative parity with respect to the y = 0 axis. We inspect
these states by diagonalization of Hamiltonian (1) for a closed
system with varied length of the leads given by L [see Fig. 1(c)]
and plot the energy spectrum with black dotted curves in
Fig. 2(b). Note that in fact each curve corresponds to the
energies of two spin-opposite states. In Fig. 2(c) we plot the
real part of the wave function of the spin-up states whose
energies we mark by A, B, and C. The A and C states are
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FIG. 2. (Color online) (a) Conductance of the ring as function of
the Fermi energy. (b) Energy spectrum for a closed system of a ring
with leads of length L. In (a) and (b) black dotted curves represent
results obtained for Fz = 0 and red solid curves for Fz = 50 kV/cm.
(c) Real part of the spin-up wave function corresponding to the states
A, B, and C marked with blue arrows on (b) obtained without SO
coupling for L = 80 nm. Green contours depict the profile of the
confinement potential.

the states of positive parity and due to the fact that their wave
function is nonzero in the leads their energy changes with L.
On the other hand the wave function of negative-parity state
B is zero in the leads and its energy is independent of L.

When the electron is transmitted through the ring the
current-carrying state from the lead (which is a state of positive
parity, i.e., the ground state of transverse excitation) couples
to the localized states with positive parity. The conductance
of the ring as function of electron Fermi energy [see black
dotted curve in Fig. 2(a)] exhibits wide resonances due to
this coupling. In the absence of SO interaction the localized
states of the negative parity are bound; i.e., their lifetime is
infinite in spite of the fact that their energy lies in the energy
continuum—above the lowest subband transport threshold. On
the other hand the energy of those states is still below the
transport threshold for the next subband with wave functions
of negative parity with respect to the axis of the channel.

When the SO coupling is introduced (we discuss first the
case of weak Rashba coupling with Fz = 50 kV/cm) the
parity of the localized states is no longer well defined. For
instance mean values of parity operator for states A, B, C
are 0.939, − 0.962,0.957, respectively. Due to the broken
symmetry, the current-carrying state from the lead couples
now to all the localized states. This results in the appearance
of sharp peaks in the conductance, plotted by the red curve in
Fig. 2(a), in addition to the wide resonances. These sharp peaks
are Fano resonances with characteristic asymmetric dip-peak
structures. Their energy corresponds to the energy of states
localized purely in the ring. The small width of the resonances
is reflected in a finite but long lifetime of the resonance state.
In Fig. 2(b) the red curves present the energy spectrum of a
closed system as function of L in the presence of SO coupling.
Note that now due to the fact that the states lack a well-defined
parity anticrossings appear in the spectrum.

B. Spin transport

Let us now inspect spin transport through the ring. We
consider the transmission of the electron with spin initially
polarized along the z direction (from the k↑ subband) and
study the spin state at the output of the system.27 However, for
the considered residual magnetic field B = 0.1 mT the transfer
probabilities from both subbands are exactly the same and the
spin at the output of the ring is exactly opposite.

In Fig. 3 we plot the conductance (black curve) and mean
spin components at the output lead by solid colored curves.
Notice that outside the resonance regions the output spin
orientation remains unchanged when Ef is varied—see the
red and green curves—which is in agreement with the results
of Ref. 6. However, when the electron Fermi energy is tuned
to a resonance value the spin at the output is modified, as seen
clearly in Figs. 3(b) and 3(c).

In order to further explore the spin changes in the narrow
resonance regions let us increase the magnetic field, such the
spin splitting of the localized resonance states is pronounced;
namely, we apply B = 0.02 T. Now the transfer probabilities
for an electron incoming from the subband k↑ and k↓ are
no longer the same. In Fig. 4(a) with the purple curve we
plot the transfer probability for an electron incoming from the
lowest subband in the lead, i.e., k↑ with spin polarized parallel
to the z direction. With the green curve we show the transfer
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FIG. 3. (Color online) (a) Conductance through the ring (black
curve) and mean spin components (blue, green, and red solid curves)
at the output lead for the electron with initial spin polarization along
the z direction. (b), (c) Close-ups of the resonances in plot (a).

probability for an electron incoming from the second subband,
i.e., k↓ with spin polarized antiparallel to the z direction. We
find that the Fano resonances from Figs. 2(a) and 3(a) are now
converted to sharp peaks in the transfer probabilities occurring
separately in both Tk↑ and Tk↓ . In Fig. 4(c) we plot the energy
spectrum of the closed system with varied length of the leads.
Notice that the magnetic field splits the spin doublets of the
localized states. The states have nonzero average spin com-
ponent in the z direction (with |〈sz〉| � 0.9). The states lying
lower in energy have 〈sz〉 < 0; the states with higher energies
have 〈sz〉 > 0. The splitting energy of the doublet is not equal
to the Zeeman splitting as the spin and orbital parts of the wave
function of the states are mixed by the Rashba coupling present
in the ring. Namely, the energy of twice the Zeeman splitting is
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FIG. 4. (Color online) (a) Transfer probability for electron incom-
ing with spin polarized parallel (purple curve) and antiparallel (green
curve) to the z direction. (b) Mean values of the spin components in
the x,y, and z directions at the end of output lead multiplied by the
transfer probabilities. Solid curves are obtained for transport from k↑,
dashed curves for k↓. (c) Eigenenergies of closed system with leads
of length L. The results are obtained for B = 0.02 T.

2Ez = |gμBB| = 10 μeV and the energy difference between
the states whose energies we mark with orange and light blue
curves is 12 μeV and for the pair plotted with blue and red
curves the energy difference is 17 μeV. The mean values of
the spin operators in the x and y direction are zero.

The peaks in the transport probabilities for an electron with
initially spin polarized parallel to the z direction [see purple
curve in Fig. 4(a)] appear for energies equal to those of the
resonance states marked with orange, blue, and green colors
in Fig. 4(c), with positive 〈sz〉. For opposite spin orientation
peaks are present for energies corresponding to the second
state from the spin doublet (with energies marked with light
blue, red, and purple curves), with negative 〈sz〉. This indicates
that resonances in the transfer probability appear when the spin
of the localized state matches the orientation of the spin of the
incoming electron.

Let us now inspect the average spin components at the
output of the system. In Fig. 4(b) we present the mean x,y, and
z spin components multiplied by the conductance with blue,
green, and red curves, respectively. Solid curves correspond
to initial spin-up polarization and the dashed one to initial
spin-down polarization. We observe that when the transported
electron couples to the resonance states localized in the ring the
spin at the output is close to the average spin of the resonance
state (see the peaks marked with vertical dashed lines). Outside
of the resonances we observe that the spin of the transferred
electron deviates from the z or −z direction.

C. Dependence of the spin orientation on the Fermi energy
for increased SO strength

Lets go back to the case of residual magnetic field B =
0.1 mT and inspect the dependence of the spin transport on
the electron Fermi energy for increased strength of the SO
coupling. In Fig. 5 we plot the mean spin components for four
Fz values. We observe distinct broadening of the spin changes
at the Fano resonances. The broadening of the resonances
corresponds to a reduction of the lifetime of the resonance
states in the ring.

Although the Fermi energy affects the spin evolution in the
ring, the spin measured at the output (i.e., multiplied by the G)
remains unchanged as function of Ef for Fz < 200 kV/cm.
This is made clear by the contour maps of the mean spin
components multiplied by the conductance presented in Fig.
6(a) for the y component and in Fig. 6(d) for the z component.
Outside the narrow Fano region spin changes are masked by
the blocked transport through the ring.

Figures 6(a) and 6(b) show that as the strength of the Rashba
coupling is varied the conductance of the ring is changed due
to the phase shift of the wave functions traveling in the left
and right arm of the ring—the AC effect that modifies the
conductance by a factor of13

GAC = e2

h

[
1 − cos

(
π

√
1 +

(
2Rm∗α|e|Fz

h̄2

)2)]
. (6)

For appropriately chosen strength of the SO coupling transport
through the ring is quenched.18,19 For parameters taken in the
present calculation the first AC oscillation minimum (GAC =
0) is present around Fz = 200 kV/cm which can be observed
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in Figs. 6(a) and 6(d). On the other hand the first maxima
of the AC oscillations appear for Fz = 0 and around Fz =
340 kV/cm (note that the quenching of the conductance is
found at slightly lower values of Fz for higher Fermi energy).

Similarly to the dependence of the spin on the electron
Fermi energy observed before the first AC oscillation min-
imum (Fz < 200 kV/cm) we find that the spin changes for
Fz > 200 kV/cm—after the first AC oscillation minimum [see
Figs. 6(b) and 6(e)]. Similarly to the spin dependence in Fig. 5,
they originate in the Fano resonances. Only now the resonances
are associated with the second AC oscillation maximum
around Fz = 350 kV/cm. Moreover now the dependence of
the spin on the Fermi energy is no longer masked by the
quenched transfer probabilities and it is visible in the contour
maps of Figs. 6(a) and 6(d).

We conclude that the changes in the spin orientation
originate at the Fano resonances appearing around and in the
AC oscillation maxima and are broadened for SO coupling
strength detuned from the AC oscillation maxima.

D. Comparison with one-dimensional model

In Ref. 6 it was found that when the electron is trans-
ferred through a one-dimensional spin-orbit-coupled ring
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FIG. 6. (Color online) Mean spin components [(a) 〈sy〉, (d) 〈sz〉]
at the output of the system multiplied by the conductance as function
of the Rashba coupling strength and the Fermi energy. Plots (b) and
(e) shows mean spin components at the output of the ring 〈sy〉 and
〈sz〉 respectively. (c) and (d) are the spin components independent of
Ef as calculated from the 1D approximation (see text).

its spin precesses around the y direction by an angle
2θ = 2 arctan(−Fz|e|α2m∗R/h̄2) which is independent of
the electron Fermi energy. We calculated the spin after the
rotation (taking R as the external radius of the ring, the
area where the SO is present) about the angle 2θ and plot
the spin components in Figs. 6(c) and 6(f). We observe that
before the first AC oscillation minimum both of the present
results—of the two-dimensional model and the results for the
one-dimensional ring—are similar with the exception of the
spin resonances that are present in the first case. However, as
the SO coupling strength is increased—the entanglement of
the orbital and spin part of the wave function present for the
system with finite-width channel increases—the discrepancy
between our calculation and the results of the one-dimensional
model increases. Namely, we find positive values of the y

spin component, which is not seen in the one-dimensional
approximation [note that the predictions of Eq. (6) for AC
oscillation maxima and minima still hold for this strength of
SO coupling].

E. Impact of the channel width and the ring radius

Let us now inspect the influence of the channel width on the
spin behavior. We perform calculations in which we keep the
mean radius of the ring constant and modify the channel width
W . We observe that the dependence of the spin orientation
on the Fermi energy is changed. In Fig. 7 we plot the spin
components at the output of the ring for different channel
width. The wide resonances of the spin at the output as function
of Fermi energy found for the wide-channel ring [see Fig. 7(c)]
are transformed to sharp peaks for a ring with narrow channels
[see Fig. 7(a)]. As the strength of the Rashba coupling and the
mean radius of the ring are kept constant, we conclude that the
dependence of the spin on the electron Fermi energy is an effect
of the two-dimensional character of the channels which gets
weaker for decreased W ; i.e., the resonances become narrower.
This is in agreement with the intuition that for infinitesimal
narrow channels the dependence of Ef should vanish (the
peaks should be infinitesimally narrow) and the spin changes
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FIG. 7. (Color online) The mean spin components at the output
(〈sx〉 with blue, 〈sy〉 with green, and 〈sz〉 with red curve) for Fz =
70 kV/cm and varied channel width W . Dotted black curves present
the transport probabilities.

should not depend on the electron Fermi energy as found in
the one-dimensional model. Note that in Fig. 7(c) we plot only
the Fermi energy range below the energy of the third subband
in the lead.

As expected from Eq. (6) the position of the AC oscillation
minima and maxima with respect to the Rashba coupling
strength is inversely proportional to the ring radius. In Fig. 8
we the present results obtained for a ring with mean radius
R = 220 nm. First, we observe that spin components oscillate
more frequently as function of the Fermi energy which can
be attributed to the lower spacings between the energies of
the localized states of a larger ring. Nevertheless, we observe
a similar qualitative spin behavior with respect to the Fermi
energy as in the case of a smaller ring [compare Figs. 8(b)
and 8(e) with Figs. 6(b) and 6(e)]. Only now we are able
to observe more periods of AC oscillations. We again find
that the spin changes originate from the Fano resonances,
which appear when the SO strength is tuned to the AC con-
ductance oscillation maxima, i.e., for Fz � 185 kV/cm and
Fz � 320 kV/cm. However, in terms of the mean spin values
multiplied by the conductance, we observe a dependence
on the Fermi energy only for strong SO coupling (namely
Fz > 200 kV/cm) similarly to the case of a smaller ring.
Also the correspondence with the one-dimensional results [see
Figs. 8(c) and 8(f)] remains the same as for smaller ring radius.

IV. SUMMARY AND CONCLUSIONS

In summary, we have studied the spin and charge trans-
port through a spin-orbit-coupled quantum ring with two-
dimensional channels. We found Fano resonances of the
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FIG. 8. (Color online) Mean spin components [(a) 〈sy〉, (d) 〈sz〉]
at the output of the system multiplied by the conductance as function
of the Rashba coupling strength and the Fermi energy. Plots (b) and
(e) show the mean spin components at the output of the ring 〈sy〉 and
〈sz〉, respectively. (c) and (f) are the spin components as calculated
from the one-dimensional approximation (see text). Results are for a
ring with radius R = 220 nm.

conductance which are present for nonzero SO coupling
strength tuned to the maxima of AC oscillations. These narrow
resonances are an effect of coupling of the current-carrying
states from the leads with the localized states in the ring
that have a long lifetime. The coupling is possible due to the
breaking of the parity of these states by the SO interaction.

In the Fano resonances spin transport through the ring is
modified. We argue that the modification is due to the coupling
of the transferred electron spin with the spin of the resonance
states which we investigated in the presence of finite external
magnetic field.

When the SO coupling strength is such that system is
outside the AC oscillation maxima the Fano resonances are
broadened. In that case the spin modification is translated into a
wide dependence of the spin transport on the Fermi energy. The
latter result is in contrast to the findings of the one-dimensional
model6 which employed spin transformations (independent of
Ef ) performed in a quantum ring to realize a universal set of
quantum gates. However, when the width of the channels is
decreased the resonances that result in the dependence of spin
transport on the Fermi energy become narrower; the results
tend toward the prediction of the one-dimensional model.

Moreover, by the direct comparison of the results of the
one-dimensional model and the two-dimensional calculation
we found that for strong SO coupling the spin evolution
proves to behave in a way exceeding the predictions for a
one-dimensional ring even outside the resonance region.
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APPENDIX

This Appendix describes the applied boundary conditions
and the method which are used for a solution of the electron
transport through system described by Hamiltonian (1).

1. Boundary conditions

The boundary conditions applied in the method assume that
the electron enters the system with a given wave vector kinc

(corresponding to a given energy) and can exit the system
with the combination of wave vectors available for this given
energy.

Let us first consider the output channel. The wave function
in such channel is a combination of channel eigenstates with
positive wave vectors (as we assume no backscattered waves
in the output lead). Let us subtract from the derivative

∂�(x,y)

∂y
=

∑
k>0

ikcout
k exp[iky]

(
�k

↑(x)

�k
↓(x)

)
(A1)

ikinc�(x,y), obtaining

∂�(x,y)

∂y
=

∑
k>0

i(k − kinc)cout
k exp[iky]

(
�k

↑(x)

�k
↓(x)

)

+ ikinc�(x,y). (A2)

From the discretized form of the derivative

∂�(x,y)

∂y
= �(x,y + �y) − �(x,y − �y)

2�y
, (A3)

we obtain

�(x,y + �y) = 2�y
∑
k>0

i(k − kinc)cout
k exp[iky]

(
�k

↑(x)

�k
↓(x)

)

+�(x,y − �y) + 2�yikinc�(x,y). (A4)

The same procedure leads to the form of the boundary
condition in the bottom of the computational box. Only now
we add ikinc�(x,y) and the sum includes a positive wave
vector of incoming electron kinc and the two backscattered
waves with negative wave vector. For instance, for transport
of an electron with wave vector k↑,

�(x,y − �y) = −2�y

k 	=k↓∑
k

i(k+kinc)cin
k exp[iky]

(
�k

↑(x)

�k
↓(x)

)

+�(x,y + �y) + 2�yikinc�(x,y). (A5)

We use the above forms of the wave functions to obtain the
boundary conditions, i.e., �(x,y + �y) for the top edge of
the computational box and �(x,y − �y) at the bottom of the
computational box (at the left and right edge of the mesh we
assume � = 0). The used boundary conditions are transparent;
i.e., the transport results do not depend on the length of the
leads.

2. Solving the transport problem

We solve the system of equations produced by the dis-
cretization of the Schrödinger equation with the boundary
conditions described above. In the present method on the one
hand the amplitudes cin

k and cout
k are required for the boundary

condition and on the other hand they can be obtained from
the solution of the Schrödinger equation. Thus we assume
initial values of the amplitudes (namely, cin

k↑ = cout
k↑ = 1/

√
2

for kinc = k↑; however, we checked that the particular choice of
the initial values does not change the final result) and put them
into the boundary conditions. Then we solve the Schrödinger
equation. From the solution we extract new values of the
amplitudes by projection (in the input and output leads) of
the function

�(x,y) =
∑

k

ck exp[iky]

(
�k

↑(x)

�k
↓(x)

)
(A6)

(which accounts all possible wave vectors for a given energy)
onto the solution and solve again the Schrödinger equation.
Such procedure is repeated until convergence is reached—
the extracted amplitudes do not change in the subsequent
iterations, and the amplitudes ck are such that in the input
channel there is only one incoming wave and in the output
lead there are no backscattered waves.

We calculate transport probability from the ratio of the
probability currents jk in the leads for respective wave vectors:

Tk→k′ =
∣∣∣∣c

out
k′

cin
k

∣∣∣∣
2

jk′

jk

. (A7)

The conductance G is calculated as a sum of the trans-
mission probabilities over available subbands; i.e., G =
2e2

h

∑k↑,k↓
i

∑k↑,k↓
j Ti→j .

The described approach allows one to study the electron
transport for a given Fermi energy in contrast to the methods
involving transmission of a wave packet10 that consists of the
superposition of H eigenstates. Also, as the approach is based
on an exact solution of the Schrödinger equation it naturally
includes evanescent modes that can appear in the ring.
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Tuning of the spin-orbit interaction in a quantum dot by an in-plane magnetic field
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Using an exact-diagonalization approach we show that one- and two-electron InAs quantum dots exhibit an
avoided crossing in the energy spectra that is induced by the spin-orbit coupling in the presence of an in-plane
external magnetic field. The width of the avoided crossings depends strongly on the orientation of the magnetic
field, which reveals the intrinsic anisotropy of the spin-orbit-coupling interactions. We find that for specific
orientations of the magnetic field avoided crossings vanish. A value of this orientation can be used to extract
the ratio of the strength of Rashba and Dresselhaus interactions. The spin-orbit anisotropy effects for various
geometries and orientations of the confinement potential are discussed. Our analysis explains the physics behind
the recent measurements performed on a gated self-assembled quantum dot [S. Takahashi et al., Phys. Rev. Lett.
104, 246801 (2010)].

DOI: 10.1103/PhysRevB.83.245324 PACS number(s): 73.21.La

I. INTRODUCTION

Over the past decade there has been a growing interest in
the study of the spin-orbit (SO) interaction in semiconductor
low-dimensional systems motivated by the possibility of
coherent spin manipulation.1–13 The Hamiltonians describing
the SO coupling resulting from the inversion asymmetry of the
material (Dresselhaus14 coupling) or the specific structure of
the device (Rashba15 interaction) are not invariant with respect
to the rotation of the spin or the momentum operators sepa-
rately, and, consequently, spin-orbit-coupled systems posses
intrinsic anisotropic properties. This anisotropy has been
thoroughly studied for delocalized systems.4,5 In particular,
in transport experiments, the dependence of the conductance
of a narrow quantum wire on the direction of the external
magnetic field can be used to determine the reciprocal strengths
of the Rashba and Dresselhaus couplings.6 The anisotropy
of the spin-orbit interaction is translated into an anisotropic
effective magnetic field7 for a moving electron modifying the
electron spin state. This effective magnetic field can be used
to perform rotations of spin and thus to construct quantum
gates8 or a spin-field effect transistor.9,10 Moreover, the spin-
orbit coupling is responsible for anisotropic corrections11 to
the spin swap in a two-qubit quantum gate12 because it results
in the precession of spin-packets tunneling between the two
quantum dots.13

For electrons localized in a quantum dot, the SO coupling
results in avoided crossings (AC) in the energy spectra16 and
spin relaxation17 mediated by phonons with a relaxation rate
dependent on the orientation of the external magnetic field.18

The energetic effects of the SO interaction are usually weak.
Only recently SO-induced AC were experimentally measured
on quantum dots that were situated in gated nanowires 19,20 and
gated self-assembled quantum dots.21 The latter experiment
studied changes of the width of AC for different orientations
of the magnetic field, which extended the previous studies that
were focused on a comparison of the spin-splittings for vertical
and in-plane alignment of a magnetic field 22,23 in circularly
symmetric confinement potentials.

In the present work, we explain the physics underlying
the observations of Ref. 21. To the best of our knowledge,
the present paper explains for the first time the oscillatory
dependence of the width of AC on the direction of the in-plane
magnetic field. The latter turns out to be the consequence of
the influence of the individual SO couplings and the anisotropy
of the confinement potential. This conclusion is supported by
an exact three-dimensional calculation of the energy spectra
of one- and two-electron spin-orbit-coupled quantum dots.

We show that for quantum dots with a confinement
potential elongated in [100] direction for pure Rashba (or pure
Dresselhaus) coupling, the AC disappears when the magnetic
field is aligned along the short (or long) axis of the dot. We
show how this can be understood from the form of the SO
Hamiltonians and the approximate parity of the one-electron
wave functions. The dependence of the AC width on the
direction of the magnetic field turns to be a | sin φ|-shaped
function, and when both couplings are present, this function
is shifted by an amount that depends on the relative strength
of both interactions. This shift is affected by the orientation of
the dot within the [001] plane due to the SO bulk-induced
anisotropy (Dresselhaus term). For completeness, we also
study the influence of the dot shape. We show that for a square-
based quantum dot the anisotropic dependence of the AC width
is only observed when both couplings are present.23 Moreover,
we show that for increased height of the dot, the orbital effect of
the magnetic field modifies the energy spectrum, but the shape
of the dependence of the anticrossing width on the direction
of the in-plane magnetic field remains unaltered.

The present work is organized as follows: we start with an
outline of our theoretical approach in Sec. II. In Sec. III, we
present our numerical results starting from the single-electron
case, which provides us with a physical insight of the reasons
for the SO-coupling anisotropy. We continue by studying
different orientations and geometries of the dot, and we end
the section with the two-electron case that allows for a direct
comparison with the recent experimental data of Ref. 21. We
end with a concluding discussion in Sec. IV and a summary in
Sec. V.
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II. THEORY

A. Model

Our aim is to calculate the energy spectra of one and two
electrons confined in a three-dimensional quantum dot in the
presence of SO coupling and a magnetic field oriented within
the quantum-dot plane. The effect of the spin-orbit coupling on
the energy is very small, requiring a very high numerical pre-
cision when evaluating the energy spectrum. We assume that
the quantum dot is cuboid in shape and that the confinement
potential is separable, namely, V (r) = Vx(x) + Vy(y) + Vz(z).
Moreover, we assume that the one-dimensional confinement
potentials Vx, Vy , and Vz can be described by an infinite
quantum-well model. This is a reasonable approximation for
not too small quantum dots. Under these assumptions one
can construct a sufficiently precise solver for the two-electron
problem. We consider a quantum dot with a varied in-plane
orientation with respect to the crystal host. The z axis is taken
along the [001] crystal direction, which is also the vertical axis
of the dot. The orientation of the dot is described by a rotation
of the x and y directions (which are the axes of the dot) with
respect to the [100] and [010] crystal directions. The outline
of our quantum dot and the coordinate system used is depicted
in Fig. 1.

B. Method

We employ the effective mass approximation with a single-
electron Hamiltonian of the form

h =
[
h̄2k2

2m∗ + V (r)

]
1 + 1

2
gμBBσ + HBIA + HSIA, (1)

where k = −i∇ + eA/h̄, 1 is the identity matrix, V (r) defines
the confining potential, and HBIA and HSIA are the spin-orbit-
coupling Hamiltonians. The x, y, and z directions are taken

z [001]

y

x

φ

B

Fz

θ

x' [100]

y' [010]

Rx

Rz

Ry

FIG. 1. (Color online) Schematics of the quantum dot system
with the used coordinate system fixed to the quantum dot. The
crystallographic directions of the InAs host lattice are also indicated
together with the direction of the in-plane magnetic field.

along the axes of the dot. But notice that the SO-interaction
Hamiltonians are defined in a coordinate system with axes
parallel to the [100], [010], and [001], which we denote with
x ′, y ′, and z. Both coordinate systems are transformed into
each other by an in-plane rotation by an angle θ .

We introduce the Rashba coupling with Hamiltonian,

HSIA = α∇′V · (σ ′ × k′), (2)

where α defines the coupling strength. For infinite-quantum-
well confinement the term ∇′V within the dot is equal to
the external electric field. We neglect the influence of the in-
plane component of the electric field24 and obtain the Rashba
Hamiltonian in the form

HSIA = α
∂V

∂z
(σx ′ky ′ − σy ′kx ′ ). (3)

Thus the electric field is in the z direction, which is incorpo-
rated by taking a nonzero slope of the bottom of Vz(z).

Inversion asymmetry of the crystal lattice results in a
Dresselhaus SO coupling that is described by the Hamiltonian

HBIA = γ
[
σx ′kx ′

(
k2
z − k2

y ′
) + σy ′ky ′

(
k2
x ′ − k2

z

)
(4)

+σzkz

(
k2
y ′ − k2

x ′
)
],

where γ is the coupling constant.

The coordinate system used for the SO coupling can be
transformed into the coordinate system used for the quantum
dot through the transformation:

x ′ = x cos θ − y sin θ,
(5)

y ′ = x sin θ + y cos θ,

which applies both to the Pauli matrices σ and the coordinates
of the momentum operator.

We include an in-plane magnetic field of orientation
B = B(cos φ, sin φ,0), which is described by the gauge A =
B(z sin φ,0,y cos φ). The magnetic field vector, B, for φ = 0
is oriented along the x direction (see Fig. 1).

The one-electron Hamiltonian, Eq. (1), can be rewritten in
the form h = hx + hy + hz + hns, where

hx = − h̄2

2m∗
∂2

∂x2
+ Vx(x), (6)

hy = − h̄2

2m∗
∂2

∂y2
+ Vy(y) + e2B2

2m∗ y2 cos2 φ, (7)

hz = − h̄2

2m∗
∂2

∂z2
+ Vz(z) + e2B2

2m∗ z2 sin2 φ, (8)

are spin-independent parts separable in the x, y, and z

directions, and

hns = − ih̄eB

m∗

(
z sin φ

∂

∂x
+ y cos φ

∂

∂z

)
(9)

+1

2
gμbB[σx cos φ + σy sin φ] + HSIA + HBIA

is the nonseparable part that contains the spin-dependent terms.
The eigenenergies and the eigenvectors, ψx(x), ψy(y), and

ψz(z), of the Hamiltonians, hx, hy and hz, are calculated
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separately on an one-dimensional mesh of N1D = 1000 points.
In a next step, we diagonalize hns in a basis of products
of the eigenstates, ψx(x), ψy(y), and ψz(z), resulting in
three–dimensional spin-orbitals ψ(r,σ ). We typically take
Nx = Ny = 20 and Nz = 10 one-dimensional eigenstates (we
assumed Rz � Rx,Ry), which, including the degeneracy of
the spin, gives a basis consisting of 8000 elements that results
in an accuracy better than 5 μeV.

We solve the two-electron problem as described by the
Hamiltonian

H = h1 + h2 + e2

4πεε0|r1 − r2| (10)

using the configuration-interaction approach. In our numerical

calculation, we take the dielectric constant ε = 14.6 for InAs.
The Hamiltonian in Eq. (10) is diagonalized in a basis
constructed of antisymmetrized single-electron spin-orbitals
ψ(r,σ ),

� = 1√
2

n∑
i=1

n∑
j=i+1

[ψi(1)ψj (2) − ψi(2)ψj (1)], (11)

where 1 and 2 are the spatial (r) and spin (σ ) coordinates of

the corresponding electron. The electron-electron interaction
matrix element requires the calculation of integrals of the form

e2

4πε0
〈ψi(r1)ψj (r2)| 1

ε|r1 − r2| |ψk(r1)ψl(r2)〉

= e

∫
d3r1ψ

∗
i (r1)ψk(r1)

∫
d3r2

e

4πε0

ψ∗
j (r2)ψl(r2)

ε|r1 − r2|
= e

∫
d3r1ψ

∗
i (r1)ψk(r1)Vjl(r1). (12)

A direct calculation of these six dimensional integrals requires
an enormous numerical cost. Therefore, we use a method25 in
which the innermost integral is attributed to an electric poten-
tial, Vjl(r1), originating from an electric charge distribution,
ψ∗

j (r2)ψl(r2). We calculate the electric potential by solving
the Poisson equation ∇2Vjl(r1) = −e/(εε0)ψ∗

j (r1)ψl(r1) with
the boundary condition

Vjl(rb) = e

4πε0

∫
d3r1

ψ∗
j (r1)ψl(r1)

ε|rb − r1| , (13)

where rb lays within the boundary of the the computational

box. The Poisson equation is solved on a grid that covers the
dot area. The calculation accuracy is carefully monitored26

and a configuration-interaction calculation convergence better
than 10 μeV is reached for n = 20.

C. Parameters

The bulk of our results presented in the following sections
are obtained for the parameters described below. In the
experiment of Ref. 21, an anisotropic InAs self-organized
quantum dot (SOQD) grown on a [001] GaAs substrate is
studied with a confinement potential that is elongated due to
the source and drain electrodes placed above the dot. The
orientation of the dot with respect to the in-plane crystal

directions is not well resolved and in the present work, this
is taken as an additional parameter that is studied. We take
Rx = 100 nm as the long and Ry = 60 nm as the short size
of the dot.21 We take Rz = 10 nm as a reasonable estimate of
the dot height (note that the SOQD has a nominal pyramidal
shape21 with height 20 nm, but our model is limited to a
potential with a rectangular shape of vertical cross section).
Rz influences the effective strength of the Dresselhaus-
coupling constant and the orbital effects of the in-plane
magnetic field. Results for Rz > 10 nm are also discussed
below.

For the purpose of the present study, it is important to
notice that the electric field in the growth direction defines the
strength of the Rashba coupling. The electric field is influenced
by the potential profile within the dot,27 the Schottky barrier
at the dot-electrode interface, surface charges, and the applied
potentials.24 The electrostatics of the actual device is complex
and its complete description is out of the scope of the present
work. Nevertheless, we are able to estimate the external
electric field present in the system by considering the stability
diagram and the width of the systems.28 We estimated the
maximal value of the external electric field to be of order
−30 kV/cm, for which the electrons are still present in the
dot.29 From the gate voltage, Vg = −0.4 V, of two-electron
spectroscopy, we estimated Fz = −13.6 kV/cm, and this value
is used in our numerical calculation. Finally, in this paper
we indicate that the ratio of the Rashba-coupling strength
(that is proportional to Fz) to the strength of the Dresselhaus
coupling can be extracted from the experimentally measured
orientation of the magnetic field for which the SO-induced AC
vanishes.

We take the SO coupling parameters as α = 1.1 nm2, from
Ref. 30, for the Rashba coupling and γ = 26.9 meV nm3, from
Ref. 31, for the Dresselhaus coupling constant. The material
parameters for InAs are adopted from Ref. 32, with values
m∗ = 0.026 and g = −17.5.

III. RESULTS

A. Without SO coupling

We consider first a dot aligned such that the x axis is
oriented along [100] (y axis along [010]), namely, θ = 0.
The energy spectrum obtained in the absence of the SO
coupling (we take α = γ = 0) for a single-electron anisotropic
quantum dot is presented in Fig. 2 by the black solid
curves. In the absence of the magnetic field, the ground state
is doubly degenerate with respect to spin and the spatial
wave function is of even symmetry with respect to plane
inversions: ψ(x,y,z) = ψ(−x,y,z), ψ(x,y,z) = ψ(x, − y,z),
and ψ(x,y,z) = ψ(x,y, − z). We denote the state of even
symmetry with respect to all inversions by |ψ+〉. The first
excited state is a spin-doublet with wave functions meeting the
symmetry conditions: ψ(x,y,z) = −ψ(−x,y,z), ψ(x,y,z) =
ψ(x, − y,z), and ψ(x,y,z) = ψ(x,y, − z). We will refer to
this state as |�−〉. The nonzero magnetic field lifts the
spin-degeneracy splitting of the states of the same parity by the
Zeeman energy. The energy levels depicted by the black lines
in Fig. 2 are obtained regardless of the φ value in spite of the
lateral anisotropy of the dot. Due to the small Rz value and the
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FIG. 2. (Color online) The black solid curves represent the one-
electron-energy spectrum obtained without spin-orbit coupling for
the in-plane magnetic field, regardless of the φ value. The red dashed
curves are the energy levels when only Dresselhaus coupling with
γ = 26.9 meV nm3 is included with the magnetic field aligned along
the y direction (φ = 90◦). The inset shows a zoom-in view of the
energy levels in the vicinity of the anticrossing.

in-plane alignment of B, no orbital effects of the magnetic field
are observed (the influence of the height of the dot is studied in
Sec. III F).

Generally, in the presence of an in-plane magnetic field,
the Hamiltonian in Eq. (1), even without SO interaction,
does not commute with the plane-inversion operators Px and
Py [defined as Pxf (x,y,z) = f (−x,y,z) and Pyf (x,y,z) =
f (x, − y,z)]. However, due to the insignificance of the
orbital effect of the magnetic field for this flat quantum
dot, the parity with respect to reflection through the x = 0
and y = 0 plains is approximately preserved (with 〈Px〉 and
〈Py〉 above 0.97) even for nonzero B. For the following
discussion, we denote the four lowest-energy states for a small
magnetic field aligned parallel to the y direction as |�(+,↑)〉,
|�(+,↓)〉, |�(−,↑)〉, and |�(−,↓)〉 with corresponding energies
E(+,↑), E(+,↓), E(−,↑), and E(−,↓), where the arrow denotes
the spin state aligned parallel (↑) or antiparallel (↓) to the
magnetic-field vector.

B. Single type of SO coupling

Inclusion of the SO interaction lifts the spin polarization
of the states and changes the crossing observed between the
energy levels of |�(+,↓)〉 and |�(−,↑)〉 around B = 4.25 T into
an anticrossing. The inset of Fig. 2 shows the anticrossing
energy levels for φ = 90◦ (B parallel to the y axis) represented
by the red curves when only Dresselhaus coupling with
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FIG. 3. (Color online) The energy levels near the anticrossing for
pure Dresselhaus (a) and pure Rashba (b) couplings for different B
orientations. The black crosses are the results from a diagonalization
of the matrix in Eq. (22) and the red crosses the results of
diagonalization of Eq. (19). The magnetic field is oriented along
the x direction (φ = 0) for the black symbols and curves and along
the y direction (φ = 90◦) for the red symbols and curves.

γ = 26.9 meV nm3 is included. We denote the minimal energy
difference between the anticrossing levels as EAC. For the
applied parameters, we obtain EAC = 146 μeV. Outside the
anticrossing the SO interaction does not modify the energy
spectrum in a noticeable way, i.e., the black and red curves
approximately coincide.

In the presence of the SO coupling, the anticrossing energy
levels depend on the orientation of the magnetic field. In
Figs. 3(a) and 3(b), we plot the energy levels obtained for
pure Dresselhaus and pure Rashba interaction, respectively,
for three different φ values. In both cases, clear dependence
of the anticrossing width, EAC, is observed with respect to the
B orientation. For pure Dresselhaus coupling the anticrossing
is the widest when the magnetic-field vector is perpendicular
to the y direction (φ = 90◦) [the red curve in Fig. 3(a)]. When
the field is aligned along the x direction (φ = 0), the mixing
between levels vanishes [the black curve in Fig. 3(a)] and
there is crossing of the levels. With pure Rashba coupling the
dependence is opposite; the anticrossing vanishes when B is
aligned along y, and EAC is largest when B is aligned along x.

The direction of the magnetic field for which the mixing
between the states disappears can be inferred from the
analytic form of the SO Hamiltonians utilizing the approximate
symmetries of the wave functions of confined electron. Let us
first inspect the case of pure Dresselhaus coupling and remind
that for θ = 0 the Hamiltonian in Eq. (4) has the same form in
the x, y, and z coordinate system. Averaging the Hamiltonian
in Eq. (4) over the z direction one obtains

H 2D
BIA = γ

〈
k2
z

〉
[σxkx − σyky] + γ

[
σykyk

2
x − σxkxk

2
y

]
(14)

+ γ σz〈kz〉
(
k2
y − k2

x

)
.

The second term is the so-called cubic Dresselhaus term,
which is negligible as long as the height is much smaller than
the lateral size of the dot (i.e., until the value of 〈k2

x〉 or 〈k2
y〉

becomes comparable with 〈k2
z 〉). For an infinite-quantum-well

ground-state wave function in the z direction the last term in
Eq. (14) vanishes33 and

γ 2D = γ
〈
k2
z

〉 = γ (π/Rz)
2. (15)
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The simplified Dresselhaus Hamiltonian takes now the
following form:

H 2D
BIA = γ 2D(σxkx − σyky). (16)

Let us now consider the case of a magnetic field aligned
parallel to the y direction and inspect matrix elements of the
H 2D

BIA Hamiltonian in a basis that include only the low-energy
states |�+,↓〉 and |�−,↑〉 that exhibit an energy crossing
without SO coupling. The matrix is given by

(
E(+,↓) + γ 2D〈�(+,↓)|σxkx − σyky |�(+,↓)〉 γ 2D〈�(+,↓)|σxkx − σyky |�(−,↑)〉
γ 2D〈�(−,↑)|σxkx − σyky |�(+,↓)〉 E(−,↑) + γ 2D〈�(−,↑)|σxkx − σyky |�(−,↑)〉

)
. (17)

The states |�(+,↓)〉 and |�(−,↑)〉 are separable into an orbital
and spin part. Due to the action of the Pauli matrices on the
states with a definite spin one gets

(
E(+,↓) − γ 2D〈�(+,↓)|σyky |�(+,↓)〉 γ 2D〈�(+,↓)|σxkx |�(−,↑)〉
γ 2D〈�(−,↑)|σxkx |�(+,↓)〉 E(−,↑) − γ 2D〈�(−,↑)|σyky |�(−,↑)〉

)
. (18)

For the magnetic-field vector aligned parallel to the y direction,
the components of the momentum-operator vector are kx =
−i ∂

∂x
+ eBz, ky = −i ∂

∂y
, and kz = −i ∂

∂z
. Due to parity one

obtains(
E(+,↓) −iγ 2D〈�(+,↓)|σx

∂
∂x

|�(−,↑)〉
−iγ 2D〈�(−,↑)|σx

∂
∂x

|�(+,↓)〉 E(−,↑)

)
.

(19)

The nonvanishing off-diagonal matrix elements mix the states
|�(+,↓)〉 and |�(−,↑)〉, which results in an avoided crossing
between the corresponding energy levels. By the red crosses

in Fig. 3 we plot numerically calculated eigenvalues of the
matrix in Eq. (19). Note that the crosses and lines are in
perfect agreement, proving that for our dot, with the assumed
geometry, the H 2D

BIA is, in fact, a good approximation to HBIA.
Let us now consider the case of a magnetic field aligned

parallel to the x (φ = 0) direction. In this case, the low-energy
states, for which energy levels cross without SO coupling, are
|�(+,←)〉 and |�(−,→)〉, where the arrow denotes the electron
spin aligned parallel (→) and antiparallel (←) to the magnetic-
field vector, B. The matrix of the H 2D

BIA Hamiltonian in this
two-state basis is

(
E(+,←) + γ 2D〈�(+,←)|σxkx − σyky |�(+,←)〉 γ 2D〈�(+,←)|σxkx − σyky |�(−,→)〉
γ 2D〈�(−,→)|σxkx − σyky |�(+,←)〉 E(−,→) + γ 2D〈�(−,→)|σxkx − σyky |�(−,→)〉

)
. (20)

Due to spin one gets (
E(+,←) + γ 2D〈�(+,←)|σxkx |�(+,←)〉 −γ 2D〈�(+,←)|σyky |�(−,→)〉
−γ 2D〈�(−,→)|σyky |�(+,←)〉 E(−,→) + γ 2D〈�(−,→)|σxkx |�(−,→)〉

)
. (21)

For the magnetic field aligned along the x direction the compo-
nents of the momentum operator vector are kx = −i ∂

∂x
, ky =

−i ∂
∂y

, and kz = −i ∂
∂z

+ eBy. All integrals in Eq. (21) vanish
due to the parity of the states and we finally obtain

(
E(+,←) 0

0 E(−,→)

)
. (22)

The matrix in Eq. (22) consists only of diagonal elements
that are equal to the energy of the basis states. Thus
the |�(+,←)〉 and |�(−,→)〉 states are not mixed by the
Dresselhaus coupling in this configuration and there is no
anticrossing of energy levels. We plot the eigenvalues of the
matrix in Eq. (22) in Fig. 3(a) (represented by the black
crosses).
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FIG. 4. (Color online) The spin-orbit-induced anticrossing width,
EAC, for pure Dresselhaus (blue dashed curve), pure Rashba (green
dotted curve), and both (red solid line) interactions present. For γ = 0
the magnetic field is B = 4.268 T, for the two other cases, B =
4.277 T.

A similar analysis can be made for the Rashba Hamiltonian
given by Eq. (2). Due to the fact that the analytic form
of both Hamiltonians HSIA and H 2D

BIA is similar, i.e., only
the kx and ky are swapped (and the coupling constants are
different), it is clear that the dependence of AC width on the
magnetic-field direction is reversed, i.e., the mixing between
the states vanishes when the magnetic filed is aligned along
the y direction.

C. Anisotropy in the presence of both SO couplings

Let us now consider the effect of both Dresselhaus and
Rashba couplings. Figure 4 presents the avoided-crossing
energy, EAC, as a function of the angle φ between the x axis
and the magnetic field. For pure Dresselhaus (the blue dashed
curve in Fig. 4) and pure Rashba (the green dotted curve in
Fig. 4) coupling the extrema are shifted by 90◦, in agreement
with our previous analysis. The curves in Fig. 4 are accurately
described by | sin(φ − φAC)|, which is the same functional
form as the one observed in the experimental work of Ref. 21 in
Fig. 3(f) (where the behavior was described by | cos(φ − φ0)|).
Moreover, the maximal value of EAC is of the same order
as the magnitude observed experimentally. When both SO
interactions are present, the dependence of the anticrossing
width is plotted in Fig. 4 by the red curve. The shape of the
latter is the same as for pure Dresselhaus or Rashba coupling,
with pronounced minima where EAC is equal to zero. When
the magnetic field is aligned along the x or y direction, the EAC

equals to the value for pure SO coupling. Note that the maxima
are larger than the ones observed for pure couplings and its
positions are now shifted and are no longer aligned along the
axes of the dot. For α = 1.1 nm2 and γ = 26.9 meV nm3, the
shift of the dependence is φAC = 27.8◦. The latter value can
be understood as follows. Let us denote the direction of the
magnetic field for which the AC vanishes for pure Dresselhaus
and pure Rashba couplings by the vectors dBIA and dSIA,

respectively. Next, we estimate the strength of each interaction.
The maximal induced anticrossing width is EBIA

AC = 146 μeV
and ESIA

AC = 77 μeV for Dresselhaus and Rashba coupling,
respectively. Thus the Dresselhaus interaction is 1.9 times
larger than the Rashba coupling, which makes the vector
dBIA 1.9 times longer than dSIA. Let us denote the magnetic
field for which the effect of both spin-orbit couplings is zero
by the vector dBIA+SIA = dBIA + dSIA. It is easy to show
that this vector forms an angle φ = 27.8◦ with the x axis.
Thus when both couplings are present, the effect of the total
spin-orbit coupling disappears when the external magnetic
field is directed along this vector. In fact, that is exactly what
we observe in our calculation (see position of the minimum
of the dependence depicted with the red curve in Fig. 4). The
formula | sin(φ − φAC)| reflects the fact that the dependency
obtained for both SO couplings present can be considered as
an absolute value of a sum of the dependencies obtained for
pure SO couplings, described by − cos φ and sin φ for pure
Rashba and Dresselhaus couplings, respectively.

D. Dependence on the quantum dot orientation

Different in-plane orientations of the anisotropic potential
of the dot with respect to the crystal host where the long axis
of the dot forms an angle θ with [100] are now considered. In
Figs. 5(a)–5(c), we present the size of the AC as a function of
the direction of the rotated magnetic field (note that the φ angle
is defined as an angle between the magnetic-field vector and
the long axis of the dot) for six different orientations of the dot.
The dotted curves in Fig. 5(a) represent the result obtained for
pure Rashba coupling. We observe that the EAC dependencies
are exactly the same as in Fig. 4 regardless of the dot alignment.
The minimum of the EAC does not change its position and the
energy levels are not affected by the orientation of the dot.
With the green diamonds we show, in Fig. 5(d), the φAC angle
for which the EAC = 0 as a function of the angle θ .

For pure Dresselhaus coupling, the EAC dependencies
[depicted by dashed curves in Fig. 5(b)] are shifted as the
dot is rotated. For the case studied in the previous subsections
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FIG. 5. (Color online) Avoided-crossing-energy width as a func-
tion of the direction (φ) for different orientations of the dot with
θ = 10◦ (black curves), 30◦ (blue curves), 45◦ (green curves), 60◦

(violet curves), and 80◦ (red curves). Results are shown for (a) pure
Rashba, (b) pure Dresselhaus and (c) for both couplings present. (d)
The value of the magnetic-field angle, φAC, at which EAC = 0 as
a function of the angle θ for pure Rashba (green diamonds), pure
Dresselhaus (black squares), and both couplings present (red dots).
The red curves are obtained from Eq. (23).
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(where θ = 0), the AC vanished when the magnetic field was
aligned along the long axis of the dot (φAC = 0). When the dot
is oriented so that θ = 45◦ (long axis oriented along the [110]
direction), the anticrossing vanishes when the magnetic field
is aligned along the short axis of the dot [see green dashed
curve in Fig. 5(b)]. For φAC = 90◦, the same behavior was
observed as in pure Rashba case. We plot in Fig. 5(d) the angle
φAC for pure Dresselhaus coupling (the black squares) for
different orientations of the dot. We find that the angle exhibits
a φAC = −2θ dependence [black solid lines in Fig. 5(d)].
Moreover, we observe that for both cases, when only a single
type of SO coupling is present the maximal value of the AC
width remains unchanged.

In Fig. 5(c), we show the results when both SO couplings are
present (the solid curves). The maximal values of EAC and the
angle φAC for which the minima are observed change when the
dot orientation is varied. Both facts can be understood similarly
as discussed in Sec. III C. We can justify the φAC values
considering the orientation of the dBIA+SIA = dBIA + dSIA

vector. But now the orientation of the dBIA vector, assigned
to the Dresselhaus coupling, is changed as the dot is rotated,
i.e., dBIA forms an angle −2θ with the long axis of the dot.
The rotation of the dot does not change the maximal value of
EAC when only a single type of SO coupling is present, and
the previously derived value for the relative strength of both
couplings remains unchanged (and thus also the ratio of the
length of the dBIA and dSIA vectors). We take 1 as the length of
dSIA and 1.9 as the length of dBIA. In Fig. 6, we schematically
present the considered vectors and the angles they form with
the axes of the dot. The angle between the dBIA+SIA vector (see
red arrow in Fig. 6) and the x direction can be easily calculated

φAC = arctan

[
1 + 1.9 sin(−2θ )

1.9 cos(2θ )

]
. (23)

θ

[100]

[010]y

x

Rx

Ry

dBIA

dSIA

dBIA+SIA

φAC

-2θ

FIG. 6. (Color online) Schematics of the method of calculation
of the angle φAC for which the the AC vanishes when both SO
couplings are present and the quantum dot (dashed rectangle) is
oriented with its long axis forming an angle θ with the [100] direction.
The vectors depict the directions of B for which EAC = 0 for pure
Rashba coupling (green arrow), pure Dresselhaus coupling (blue
arrow), and both couplings present (red arrow). The coordinate system
connected with the dot axes and the crystallographic directions is also
shown.

With the red dots in Fig. 5(d) we plot the angle φAC

obtained from our numerical calculation in the presence of
both couplings for different orientations of the dot, which
agree very well with the values (red curves) obtained from
Eq. (23). Along with the changes of the orientation, the length
of the dBIA+SIA vector is changed, which results in the different
values of the maximal AC width observed in Fig. 5(c).

A systematic study of the value of the φAC angle dependence
on the SO coupling strengths and the dot alignment is given in
Sec. III G where the two-electron case is studied.

E. Quantum dot with a square base

The above discussion was for a lateral anisotropic quantum
dot. Now we study the case of a dot with a symmetrical
base (we assume Rx = Ry = 100 nm) and θ = 0, and we
investigate if this has an influence on the anisotropy induced
by the SO coupling. In the absence of the SO interaction and a
magnetic field, the first-excited state is spin-doubly degenerate
due to parity. The magnetic field lifts the spin degeneracy but
the degeneracy due to parity is not removed. The inclusion of
a single type of SO interaction induces a repulsion between
the energy levels of the ground-state and one of the states
from the parity doublet [see the red dashed curves in Fig. 7(a)
for the case of pure Dresselhaus coupling and Fig. 7(b) for pure
Rashba coupling]. The same configuration of energy levels is
obtained regardless of the angle φ. In both Figs. 7(a) and 7(b),
the black (φ = 0), blue (φ = 45◦), yellow dotted (φ = 22.5◦),
and red dashed curves (φ = 90◦) coincide. The dependence
of the energy levels on the magnetic-field orientation starts to
appear already when the dot is elongated by a factor of 1%.

However, when both Rashba and Dresselhaus interactions
are present the AC width varies with the rotation of the
magnetic field, see Figs. 7(c) and 7(d). We observe that the
anisotropy is most pronounced when α is increased by a
factor of two—the case when both couplings have comparable
strengths.23,34 In such a case, when the magnetic field is
directed along the diagonal, i.e., φ = 45◦ [see blue curves
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FIG. 7. (Color online) Energy levels of one-electron quantum
dot with a square base with Rx = Ry = 100 nm. The black curves
correspond to φ = 0, the blue curves to φ = 45◦, yellow dotted to
φ = 22.5◦, and the red dashed curves to φ = 90◦. In (c) and (d),
we additionally plot the energy levels obtained for φ = 135◦ with
green dotted curves. (a) Pure Dresselhaus coupling, (b) pure Rashba
interaction, (c) both SO interactions are present, and (d) both SO
interactions are present with α increased by a factor of two.
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in Fig. 7(d)] the anticrossing between the energy levels of the
ground state and both states from the parity doubled becomes
very small.

F. Larger dot height

Let us now return to the case of the quantum dot with
a rectangular base with Rx = 100 nm and Ry = 60 nm. For
the previous dot with Rz = 10 nm no orbital effects from
the magnetic field on the energy spectrum were observed
[see the black curves in Fig. 2]. However, this is no longer
true for larger Rz values. This can be seen from Figs. 8(a)
and 8(b) where we plot the energy levels of a quantum dot
with height Rz = 20 nm and Rz = 40 nm, respectively, in the
presence of SO coupling (with both SO interactions present).
The energy levels depend on the magnetic-field orientation
even outside the anticrossing region. This is due to the
elongation of the confinement potential in the x direction.
The SO-induced anticrossing is shifted to lower magnetic
fields as the value of the angle φ becomes closer to φ = 90◦
[this is analogous to the experimental observation—compare
with Fig. S7(a) from Ref. 28]. We calculated the anticrossing
widths for different values of φ and we plot them as red dots
in the insets of Fig. 8. Then we fitted the points with the
function A| sin(φ − φAC)|, where A = 86 μeV and φAC = 65◦
for Rz = 20 nm and A = 77 μeV and φAC = 82◦ for Rz =
40 nm. Notice the agreement between the fitted curve and the
data points. From this fact we conclude that in spite of the
presence of orbital effects, the previously found dependence
of the anticrossing width on the angle φ still holds, but
with modified A and φAC values. The latter fact can be at-
tributed to the reduction of the Dresselhaus coupling strength.
This can be accounted for by considering the Dresselhaus
coupling Hamiltonian in Eq. (16), in which the coupling
strength decreases as (1/Rz)2. In the calculation performed
for pure Dresselhaus interaction, we obtain the maximal EAC

values: 146, 37, and 11 μeV for Rz = 10, 20, and 40 nm,
respectively-the obtained EAC values decrease approximately
as (1/Rz)2 with the largest discrepancy for large Rz values (i.e.,
when the approximation of the coupling strength by Eq. (15)
becomes inaccurate). The decrease of the Dresselhaus-
coupling strength with increasing height of the dot results
in a shift of the EAC dependency on φ toward the one obtained
for a flat quantum-dot with only Rashba interaction present
compare the black curve in the inset of Fig. 8(b) with the
green dotted curve in Fig. 4—φAC becomes close to 90◦. Also
the maximal EAC value becomes closer to the one obtained for
pure Rashba coupling—A tends to 77 μeV with increasing Rz.
The shift in the φAC value [see insets of Figs. 8(a) and 8(b)]
can be understood from the relative strengths of the Rashba
and Dresselhaus couplings as discussed in Sec. III C.

G. Two-electron results

In a recent experiment [ 21], the ground state and excited
states were measured provided that the latter entered into a
finite but narrow transport window determined by the voltages
applied to the source and drain electrodes. The avoided
crossings that appear for a single-electron in the excited part
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FIG. 8. (Color online) One-electron energy levels for a
rectangular-based quantum dot with (a) Rz = 20 nm and (b) Rz =
40 nm for φ = 0, 45◦, and 90◦ plotted with the black solid, blue
solid, and red dashed curves, respectively. The red dots in the insets
of both plots present the anticrossing width, EAC obtained from the
energy spectrum for a given φ value; the black curves are the fitted
| sin(φ − φAC)| dependencies.

of the spectrum, which we described above, were outside the
transport window.

In the two-electron regime and in the absence of both the
magnetic field and the SO interaction, the ground state is a
spin singlet and the first excited state is a spin triplet. Under
the presence of an external magnetic field the ground-state
singlet energy crosses the triplet energy. When we turn on the
SO coupling it induces an avoided crossing between the states
of opposite spin which was well resolved in the experiment
[21].

Similarly to the one-electron case, the SO coupling is
responsible for changes in the size of the anticrossing energy
when the orientation of the magnetic field is varied. Figure 9
presents the low-energy spectrum of the two-electron quantum
dot in the presence of both Rashba and Dresselhaus couplings
for a dot aligned with its long axis along the [100] direction
(θ = 0). In the inset, we plot the energy levels in the vicinity of
the AC. The anticrossing vanishes for exactly the same angle,
φAC = 27.8◦, as for the one-electron case discussed above (see
the green curves in the inset of Fig. 9).

In Fig. 10(a), we plot the angular dependence of the
anticrossing width, EAC, for pure Dresselhaus, pure Rashba,
and when both couplings are present by the blue dashed, green
dotted, and solid red curves, respectively. Notice that all three
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FIG. 9. (Color online) Two-electron energy spectrum in the
presence of both Rashba and Dresselhaus SO coupling for angles
φ = 0 (black curves), 27.8◦ (green curves), 45◦ (blue curves), and
90◦ (red curves). The inset shows the energy levels in the vicinity of
the anticrossing. The results are obtained for θ = 0.

dependencies have the same shape as for the case of the one
electron considered in Sec. III B (compare with Fig. 4), only
the maximal EAC values are about 1.5 times smaller.

As was presented in Sec. III C, for the anisotropic quantum
dot the angle φAC depends on the relative strength of both SO
interactions and the in-plane orientation of the dot (explained
in Sec. III D). On the other hand, the φAC value can be measured
experimentally21 and the orientation of the quantum dot with
respect to the crystal directions can be obtained by inspecting
the facets of the dot. This opens the possibility to employ such a
measurement to evaluate the relative strength of the Rashba and
Dresselhaus couplings for a dot with a given orientation with
respect to the crystal host. Let us define the strength ratio of the
SO interactions as the ratio of the effective coupling constants
α∗ and γ 2D. The Rashba coupling strength denoted with α∗
is calculated as α∗ = α[ ∂V

∂z
] = −α|e|Fz and the Dresselhaus

coupling γ 2D is obtained from Eq. (15).
We previously derived the angle φAC for given relative

strength of the SO couplings for a given orientation of the
dot [see Eq. (23)]. Let us substitute the 1/1.9 value by α∗/γ 2D

in Eq. (23) from which we obtain

α∗

γ 2D
= −α

γ

|e|FzR
2
z

π2
= cos(2θ )[tan(φAC) − tan(−2θ )]. (24)

This function is shown in Fig. 10(b) by the solid lines for
different orientations of the quantum dot. With the black
symbols we mark the angle φAC obtained from our numerical
calculations for dots with different geometries (see Fig. 10
caption) with θ = 0 for different SO coupling strengths. For
such a case, with θ = 0 (the dot oriented with its long axis
along [100]) and pure Dresselhaus coupling (α∗/γ 2D = 0)
we obtain φAC = 0. When the Rashba-coupling strength is
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FIG. 10. (Color online) (a) Width of the singlet-triplet avoided
crossing as a function of the angle φ for pure Dresselhaus coupling
(blue dashed curve), pure Rashba coupling (green dotted curve), and
for both couplings present (red solid curve). The inset shows the
experimental results (symbols) of Ref. 21 together with the results of
the present calculation (purple curve) with γ = 29.58 meV nm3 and
α = 4.731 nm2. The magnetic field is B = 2.211 T for pure Rashba
coupling and B = 2.209 T for all the other cases. The dot is aligned
with its long axis along [100], i.e., θ = 0. (b) The φAC value for
different strength ratios of the Rashba and Dresselhaus couplings for
four different orientations of the dot. The symbols present the results
of our numerical calculation and the curves represent the analytical
result given by Eq. (24). The circles show the results obtained for
Ry = 60 nm and Rz = 10 nm, the crosses for Ry = 30 nm and
Rz = 10 nm, the triangles for Ry = 20 nm and Rz = 10 nm, and
the diamonds for Ry = 60 nm and Rz = 20 nm. In all cases, Rx is
100 nm.

increased, the points move toward the angle φAC = 90◦
obtained for pure Rashba SO coupling. The green, red, and
blue symbols in Fig. 10(b) are the φAC values obtained from our
two-electron numerical calculation for different orientations of
the quantum dot.

In the above discussion, we assume that α∗ = −α|e|Fz

and γ 2D = γπ2/R2
z describe the strength of the spin-orbit

interactions. For the Rashba coupling, given by the Hamil-
tonian in Eq. (3) (i.e., when an electric field is only present
in the growth direction), the above α∗ expression is valid
regardless of the dot geometry. However, due to the fact that
γ 2D originates from the Hamiltonian in Eq. (14), it describes
the strength of the Dresselhaus coupling correctly only when
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TABLE I. Calculated strength ratios of the SO couplings for
φAC = 59◦ and different orientations of the dot.

θ α∗/γ 2D

0 1.66
40◦ 1.27
45◦ · · ·
75◦ −0.94
90◦ −1.66

the cubic term, γ [σykyk
2
x − σxkxk

2
y], is negligible, which is

the case when Rx,Ry � Rz and the term with 〈kz〉 is close to
zero, i.e., for a dot with limited height.33 All the symbols in
Fig. 10(b) approximately coincide with the dependency given
by Eq. (24). A discrepancy is seen in the limit of a narrow dot
with Ry = 20 nm (the triangles) and for increased height of
the dot for Rz = 20 nm (diamond symbols). We conclude that
for anisotropic quantum dots with limited height the α∗/γ 2D

ratio is a good measure of the relative strength of the Rashba
and Dresselhaus spin-orbit couplings, which can be estimated
from the analytic expression in Eq. (24).

The experiment of Ref. 21 found φAC = 59◦, and we can use
Eq. (24) to calculate the relative strength of the SO interactions.
However, as the orientation of the anisotropic potential of the
dot with respect to the crystal directions was not resolved in
the experiment we need to assume a value for θ . We take
θ = 0 and by matching the absolute value of the SO-coupling
constants (through the maximal value of EAC) we obtained
α∗/γ 2D � 1.66 by fitting the experimentally measured values
for the AC width with our simulation results. In the inset
to Fig. 10(a), we plot our results (purple curve) for the SO-
coupling constants γ = 29.58 meV nm3 and α = 4.731 nm2

together with the data points from Ref. 21. However, as the
relation between the crystal directions and the long axis of
the dot is not known, the fit only proves the validity of the
discussed process behind the anisotropy and not the exact
value of the ratio α∗/γ 2D. Moreover, as the electrostatics of
the actual device is complex the presented result is not the
exact simulation of the experiment. Therefore, we present in
Table I the strength ratios for different orientations of the
dot. Note that Eq. (24) does not allow us to calculate the
relative strength of the couplings for a dot aligned with long
axis exactly along [110] or [110]. In such a configuration, for
pure Dresselhaus as well as for pure Rashba coupling the AC
vanishes for φAC = 90◦ [compare dotted curves in Fig. 5(a)
with green dotted curve in Fig. 5(b)] and because of that,
for both couplings present simultaneously the minimum of the
EAC dependence on φ is not shifted irrespective of the coupling
strength ratio.

IV. DISCUSSION

In the present paper we discussed the avoided crossings
of energy levels induced by the presence of different SO
couplings. Only for the case of a square-based quantum-dot
[see Figs. 7(a) and 7(b)] the dependence of AC width on
the magnetic-field direction was observed solely for both
couplings present with comparable strength. This result is
related to those of Ref. 23 where the spin-splitting of

single-electron energy levels in strictly two-dimensional circu-
lar quantum dots in the presence of a small in-plane magnetic
field (before the crossings and avoided crossings appear)
was calculated. When the Dresselhaus- and Rashba-coupling
strengths are equal, a well-known high-symmetric case is
found, which is beneficial for many spintronic applications.5,10

For that special case, the energy spectrum is not affected
by SO-interaction effects and the spin in the [110] direc-
tion is strictly defined. The Zeeman interaction lifts this
symmetry and results in a spectrum that depends on the
orientation of the magnetic field as discussed in Ref. 23.
Since for equal coupling strengths the spins in the [110]
direction are well defined, the Zeeman interaction for B
oriented along [110] does not produce any AC between
energy levels of spin-orthogonal states [see the blue curve in
Fig. 7(d)].

On the other hand, in the presence of a vertically oriented
magnetic field, the size of the Zeeman interaction induced
lifting of the symmetry depends on the in-plane orientation 34

and also on the width35 of the dot, which results in changes
of both the AC width and the effective g factor, which are
solely observed when both SO interactions are present with a
comparable strength. However, changing the dot orientation is
hardly achievable experimentally and therefore, in the present
work, we considered an anisotropy that can be probed by
changing the orientation of the magnetic field.

In the present work, we investigated the anisotropic de-
pendence of the avoided-crossing width that occurs even for a
single type of SO coupling [see Figs. 3(a) and 3(b)]. This effect
is strictly connected to both the elongation of the confinement
potential and the in-plane alignment of the magnetic field (see
the discussion in Sec. III B). The exact shape of the confine-
ment potential is not important for the studied phenomena,
which is a generic propriety of a spin-orbit-coupled quantum
dot. In our analysis, we indicated the trends that determined
the dependence of EAC on φ, in particular, the dependence
on the dot geometry [for the dot with increased height and
for different lateral sizes of the dot the black symbols in
Fig. 10 still undergo the same analytical dependence Eq. (24)
in spite of the different geometries of the dot] or the orientation
of the quantum dot with respect to the crystallographic
directions (which influences the position of the minima of
EAC purely due to Dresselhaus coupling—see discussion in
Sec. III D).

The present study shows that for an elongated quantum dot
with pure Rashba coupling the anticrossing vanishes always
when the magnetic field is aligned along the short axis of the
dot [see the minima of the dotted curves in Figs. 4 and 5(a), and
10(a)]. Only the presence of Dresselhaus coupling can result
in a φAC value that is different from 90◦. The magnetic-field
direction (φAC = 59◦) for which the anticrossing vanished in
the experiment of Ref. 21 suggests that both SO couplings are
present, contrary to the argumentation provided in Ref. 21.
The authors suggested that the Dresselhaus coupling would
not induce mixing between the two lowest-energy states due
to their well-defined and different values of the total angular
momentum J− = L − S in a high magnetic field. However,
we found that due to the in-plane alignment of the magnetic
field36 the Dresselhaus coupling, in fact, induces avoided
crossings in the energy spectrum of a flat quantum dot [see
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Fig. 2] and leads also to a shift in the dependence of the AC
width on the magnetic-field direction [see Figs. 3, 5(a), 5(b),
and 8].

V. SUMMARY AND CONCLUSIONS

We presented a study of the energy spectrum of one and
two-electron spin-orbit-coupled three-dimensional quantum
dots in the presence of an external in-plane magnetic field.
We found that the size of the avoided crossings in the one-
and two-electron energy spectrum oscillates as a function of
the orientation of the magnetic field. The oscillatory behavior
could accurately be described by | sin(φ − φAC)|, which
agrees with recent excited-state-spectroscopy measurements
performed on an InAs gated self-organized quantum dot.21

For a quantum dot that is elongated in the [100] direction,
and when only a single type of SO coupling is present, the
avoided crossing vanishes for φAC = 0 (φAC = 90◦), i.e., when
the magnetic field is aligned parallel to the long (short) axis
of the dot for Dresselhaus (Rashba) coupling. We explain
this behavior as a consequence of parity and spin-dependent
mixing of the states caused by the SO interaction. When both
couplings are present the φAC value varies between 0 and

90◦ and the ratio of the relative strength of the interactions
follows a tan(φAC) dependence. The change of the in-plane
dot orientation results in a change of φAC, which is observed
only when the Dresselhaus coupling is present. We show
that the experimentally measured φAC value21 along with
the knowledge of the orientation of the dot can be used to
determine the ratio of the strengths of the individual SO
interactions in the case of anisotropic quantum dots.
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Spin rotations induced by an ac electric field in a two-electron double quantum dot are studied by an exact
numerical solution of the time-dependent Schrödinger equation in the context of recent electric-dipole spin
resonance experiments on gated nanowires. We demonstrate that the splitting of the main resonance line by the
spin exchange coupling is accompanied by the appearance of fractional resonances and that both these effects are
triggered by interdot tunnel coupling. We find that the ac-driven system generates residual but distinct harmonics
of the driving frequency, which are amplified when tuned to the main transition frequency. The mechanism is
universal for electron systems in electrically driven potentials and works also in the absence of electron-electron
interaction or spin-orbit coupling.
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I. INTRODUCTION

The idea1of processing quantum information stored in
spins of electrons confined in quantum dots has motivated
a significant theoretical and experimental effort within the last
decade. One of the necessary prerequisites for quantum gating
is coherent single-spin manipulation. Single-spin rotations can
be performed using electron spin resonance–Rabi oscillations
in external microwave radiation resonant with the Zeeman
splitting of energy levels in a magnetic field (B). Electron
spin resonance was implemented in a quantum dot2 using
an embedded on-chip microwave source. In gated quantum
dots the microwave field has been successfully replaced
by ac voltages.3–8 The periodic motion of the electron
induced by the ac field subjects its spin to an oscillating
momentum-dependent spin-orbit (SO) field,9,10 leading to
electric-dipole spin resonance (EDSR).11 The spin rotations
are detected in two-electron double-quantum-dot systems2–8

using the Pauli blockade of the current flow which occurs
when the dots become occupied by electrons with parallel
spins. The rotation of the spin lifts the Pauli blockade when
the frequency of the ac electric field is tuned to the resonant
transition.

The detailed structure of the EDSR was recently resolved8

in a double dot produced in a gated InSb quantum wire with
strong SO interactions. The experimental data [Fig. 2(b) of
Ref. 8] include a double line corresponding to transitions from
the spin-polarized triplet T+ ground state to a doublet formed
by (1) a singlet S, and (2) an unpolarized triplet T0, as well as
a single line at half the resonant frequency. Half resonances
were previously observed also in InAs quantum wire dots
[Fig. 2(b) of Ref. 7] as well as in GaAs planar quantum dots.4

Analysis of the dipole moment induced by an ac field in the
singlet subspace of two-electron systems was given in Ref. 12
in terms of flopping the pseudospin mode.

In this paper we report on the solution of the time-dependent
Schrödinger equation for the two-electron system in an ac
field induced by gates in the presence of SO coupling. We
find spin transitions involving both Rabi oscillations for the
resonant driving frequency as well as fractional resonances
which are consistent with the experimental data.8 We show that
the mechanism responsible for the appearance of the fractional

lines is the resonant amplification of the higher harmonics
residually present within the driven system.

Solution of the time-dependent Schrödinger equation is
one of the methods13–15 applied in theories of high-harmonics
generation by atoms and molecules in intense laser fields16–18

in the quest for controllable sources of ultraenergetic photons.
Noble gases or simple molecular systems (N2, O2, CO2)
generate nonresonantly high harmonics of the driving laser
field of intensity 1011 W/m2 with local field amplification by
plasmonic metal nanostructures,19 or 1013 W/m2 in standard
conditions. The amplitude of the ac electric field applied in
EDSR for quantum dots (a fraction of kV/cm) corresponds
to a laser radiation of only 105 W/m2. Nevertheless, we
find a distinct—although residual—appearance of the second
and third harmonics of the driving frequency ωac in the
electron motion within the double dot. We demonstrate that the
harmonics of the driving frequency are essentially reinforced
when brought to resonance with the Rabi direct transition
frequency. We indicate that this phenomenon is quite general
for ac-driven electron systems confined in quantum dots, in
particular that it appears also for a single electron and in the
absence of SO coupling. As a result, the confined system is
driven into an excited state by a frequency ω that is a fraction of
the excitation energy �E, i.e., h̄ω = �E/n, which is similar
to n-photon optical transitions.20

II. MODEL

The considered two-electron system is described by the
Hamiltonian

H = h1 + h2 + e2

4πε0ε|r| , (1)

with the single-electron energy operator

hi = h̄2k2
i

2m∗ + V (ri ,t) + 1

2
gμBBσxi

+ HSO, (2)

with magnetic field B aligned along the x direction. The
momentum operator is h̄ki = −ih̄∇i as we neglect the orbital
effects of the magnetic field for low values of B and in strong
confinement in the plane perpendicular to the x direction.
V (r,t) stands for the confinement potential taken in a separable
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M. P. NOWAK, B. SZAFRAN, AND F. M. PEETERS PHYSICAL REVIEW B 86, 125428 (2012)

Fac(t)

Vb

∞ ∞
250 nm

Fbias

x

z

yB

FIG. 1. (Color online) Schematic of the considered confinement
potential of a nanowire double-dot system.

form V (r,t) = Vx(x,t)Vy,z(y,z). We include the Rashba SO
interaction9 resulting from the electric field—generated by
the system of gates on which the nanowire is deposited—
which is assumed perpendicular to the wire (parallel to the
z direction), HSO = α(σxky − σykx). Figure 1 depicts the
considered confinement potential. The structure is assumed
250 nm long, with

Vx(x,t) = Vsx(x) + eFbiasx + eFacxf (x) cos(ωact). (3)

The last term in Eq. (3) represents the ac field, which is applied
to the left dot only (see [8]), i.e., f (x) = 1 in the left dot
and 0 outside. Vsx is a double-quantum-well potential with
a 30-nm-thick barrier of height Vb in the center. A constant
Fbias = −0.1 kV/cm is taken for the 8 mV source-drain bias
voltage.8 We assume a strong radial parabolic confinement in
the (y,z) direction which freezes the lateral wave functions
of both electrons into Gaussians � = (

√
πl)−1 exp[−(y2 +

z2)/2l2], with l = 30 nm. Upon integration of (1) with the
lateral wave functions one arrives at an effective Hamiltonian21

H =
∑
i=1,2

[
− h̄2

2m∗
∂2

∂x2
i

+ Vx(xi,t) − ασyi
kxi

+ 1

2
gμBBσxi

]

+
√

π/2

4πε0εl
erfcx

[ |x1 − x2|√
2l

]
, (4)

which is used in this work. Unless stated otherwise we apply
material parameters22 for InSb: m∗ = 0.014m0, g = −51,
ε = 16.5, and take the Rashba constant α = 50 meV nm.
The ac field amplitude Fac = 0.1 kV/cm is assumed. All
the calculations are performed within the finite-difference
scheme on the (x1,x2) space with exact inclusion of the
electron-electron correlation.

III. RESULTS

Figure 2(a) shows the energy spectrum of weakly coupled
quantum dots (Vb = 100 meV). The fourfold degeneracy of the
ground state at B = 0 is due to weak tunnel coupling between
the dots. The degeneracy is lifted in nonzero B: the triplet
energy levels with spin aligned parallel and antiparallel to the
x direction—T+ and T− respectively23 (plotted with the red
and blue curves)—are split by the Zeeman interaction. The
two other states—T0 and S (plotted as the green solid and
black dashed curves)—with zero value of the spin component
in the x direction remain degenerate (with energy separation
below 0.1 μeV).

We initialize the system in the T+ state. For B = 20 mT
and ac frequency tuned to the energy difference between the
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FIG. 2. (Color online) (a) Energy spectrum of coupled quantum
dots with barrier height Vb = 100 meV. (b) Map of the spin transitions
after 30 ns: the minimal value of the x component of the spin
obtained during the simulation in units of h̄/2 (the initial value is 2).
(c) Evolution of the spin x component in the left (blue curve), right
(red curve), and both dots (black curve) at the resonance marked with
the black arrow in (a).

T+ and S states (h̄ωac = ES � 55 μeV which corresponds to
the oscillation period τac � 75 ps) we see [Fig. 2(c)] that after
about 2.7 ns the spin of the electron in the left dot—wiggled
by the AC field—is inverted, while the spin in the right dot
remains unaffected.

The EDSR experiments probe the spin rotations by mea-
suring the map of current leakage through the spin blockade as
function of the driving ac frequency ωac and external magnetic
field magnitude B. Figure 2(b) shows the minimal value of
the spin obtained during a time evolution of 30 ns as function
of B and the driving frequency (the initial x component of
the spin is 2 in units of h̄/2). A single line corresponding to
the T+ → (S,T0) doublet transition is obtained. Outside this
resonant line the ac field does not influence the spin. Note
that the transition T+ → T− is not observed since it requires
rotation of both spins.

For stronger interdot coupling (Vb = 17 meV) the splitting
of T0 and S energy levels (the exchange energy1,24) becomes
nonzero, J = ET0 − ES � 5.6 μeV [see the energy spectrum
in Fig. 3(a)]. For ωac tuned to the T+ → S transition we observe
that the ac field applied to the left dot rotates the spins in both
dots [Fig. 3(c)]. This is due to the spin exchange interaction
which is now activated by the interdot tunneling. The char-
acteristic spin swap time τ = πh̄/J � 370 ps corresponds to
the intervals between the local extrema of spins observed in
Fig. 3(c). In the plot there are also fast oscillations of the spin
component visible. Their period corresponds to the period of
the ac field, i.e., τac � 63 ps for h̄ωac = 66 μeV. They are due
to spin precession25 induced by the spatial electron oscillation
driven due to stronger interdot tunnel coupling as compared to
the Vb = 100 meV case. Near B = 0 we observe an avoided
crossing of lowest-energy levels due to the SO interaction. For
B > 0.1 mT they can be identified by their spin x component
as S, T+, T0, and T −; see also the end of the section.

The map of minimal spin states encountered during a
30 ns simulation is presented in Fig. 3(b). At the diagonal
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FIG. 3. (Color online) As Fig. 2 but for stronger interdot coupling,
i.e., Vb = 17 meV.

of the plot two major lines emerge. They correspond to the
transitions from the T+ state to the S (for h̄ωac = Es) and
T0 (for h̄ωac = ET0 ) states with 0 spin x components. This
double line was observed in the experiments7,8 and attributed
to different g factors in the dots with the assumption that a
single spin responds to the ac field, and the local differences in
g factor are due to variation of the confinement composition.
In fact the present simulation shows that the lines are split
when J �= 0, which implies coupling between the spins in
both the dots. Rotation of the spin in the left dot to which
the ac field is applied results in the spin rotation of the other
electron. When only the spin in the left dot is inverted, the
final state corresponds to a spatial “spin density wave” which
is not an eigenstate of the spin, but a superposition of S and T0

states, which can be a stationary Hamiltonian eigenstate only
provided that S and T0 are degenerate as is the case in Fig. 2.

The transition T+ → S lifts the Pauli blockade
directly, while the T+ → T0 transition lifts the blockade only
indirectly26 due to the mixing of S and T0 states—which are
close in energy—by the hyperfine field. The red curve in
Fig. 3(b) obtained for h̄ω = ET− corresponds to the transition
to the T− state, which requires the rotation of spins in both dots,
and is therefore not visible for Vb = 100 meV [see Fig. 3(b)].
In nonzero B the T− energy level is too far on the energy scale
to mix with the S state via the nuclear spins. For that reason
the transition to the T− state does not unblock the current
flow26 and therefore this line is missing in the experimental
data7,8 of the frequencies lifting the spin blockade of the
current.

Besides the direct Rabi transitions additional ones for
lower frequencies are clearly visible in Fig. 3(b). Let us
focus on a cross section of the map Fig. 3(b) obtained for
B = 20 mT, presented in Fig. 4(a). The transition probability
is plotted in Fig. 4(b). The three broad peaks (marked with
ES , ET0 , and ET−) correspond to direct Rabi transitions.
The narrow resonances observed for lower ωac correspond
to fractions of the frequencies of the direct transitions. The
transition probabilities depicted in Fig. 4(b) exhibit one-half
and one-third (those are not fully saturated in the plot
resolution, i.e., h̄�ωac = 50 neV) T+ → S transitions (black
curve) and fractional T+ → T− transitions (blue curve). The
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FIG. 4. (Color online) (a) Spin transitions obtained for B =
20 mT after 3 ns (black), 10 ns (green), and 30 ns (red) for
Vb = 17 meV (the minimal x component of the spin acquired by
the system subjected to the ac field with T+ as the initial state). (b)
Probability of transition to the S (black curves), T0 (green curves),
and T− (blue curves) states after 30 ns.

fractional transition to the S state (for h̄ωac = Es/2) is of
particular importance as it lifts the spin blockade in the EDSR
experiments, and this is the fractional resonant line that is
visible in the experimental maps of Refs. 4, 7, and 8. The direct
Rabi oscillations are rather slow27 but the fractional ones are
even slower. In Fig. 4(a) the transitions after 3, 10, and 30 ns
are plotted. For 3 ns, the direct transitions are already fully
resolved in contrast to the fractional ones. At the left upper
corner of the map Fig. 3(b) one can observe an additional
resonance line which is a fractional resonance to the fourth
excited state.

Let us focus on the origin of the fractional transitions. First
we consider the ac frequency h̄ωac for which no transition
occurs. The Fourier transform of the total momentum is
presented in Figs. 5(b) and 5(c). We observe that when
the electron is driven by an ac field its motion is periodic,
consisting of (i) the driving frequency h̄ωac, (ii) its har-
monics (marked with the red dashed lines in Fig. 5), and
(iii) the resonant frequency corresponding to the direct T+ →
S transition (marked with the blue dashed line in Fig. 5). When
the driving frequency is such that one of its harmonics matches
the resonant one [Fig. 5(a)] its amplitude is greatly amplified
and the system exhibits a resonant transition.
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FIG. 5. (Color online) Fourier transform of the total momentum
calculated for three different driving ac frequencies h̄ωac.
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FIG. 6. (Color online) Transition probability to the first excited
(green curve) and second excited (red curve) state after 10 ns for
a one-electron single dot (Vb = 0) with (solid curves) SO coupling
and without (dashed curve). The inset presents the single-electron
energy spectrum with SO coupling included along with the direct
Rabi transitions.

We find that there is a relation between the intensity of the
fractional line in the transition maps and the probability of
finding both electrons in the same dot in a given final state. In
particular, for Vb = 17 meV the probabilities for subsequent
states are S, 0.02, T0, 0.002, and T−, 0.04. Both the transitions
for h̄ωac = Es/2 and h̄ωac = ET−/2 occur in t � 25 ns with
the half-width of the transition peak approximately 100 neV
(the transition for h̄ωac = ET−/3 is as long as 200 ns with
the half-width of the peak about 10 neV). The fractional
transitions to T0 are missing in Fig. 4 and we do not
observe the generation of a residual frequency for h̄ω = ET0

in Fig. 5. In fact the fractional transition for h̄ωac = ET0/2
does occur but with a linewidth that is narrower than the
plot resolution of 50 neV—the half-width of the peak is
about 1 neV with the transition time more than t = 1 μs. For
nonzero double occupancy probability the electrons are at least
partially driven over the entire double-dot area by the ac field
and the generation of higher harmonics becomes effective.
Consequently for Vb = 100 meV where the probabilities are
as small as 10−4 no fractional transitions are observed.

The source of the fractional resonance observed in the
experiments is the dynamics of a nonadiabatically driven
electron system. In order to demonstrate that, let us reduce
the problem to a single-electron one (we also lift the interdot
barrier). The energy spectrum for such a system is presented
in the inset to Fig. 6. The transition between the ground state
and the first excited state is possible only through a spin
rotation. The transition for h̄ωac = E2 occurs between states of
the same spin. In Fig. 6 we show the transition probabilities to
the first and second excited states. We observe both the direct
transitions and the fractional ones.

When we switch off the SO coupling the transition to the
first excited state is blocked as the spin becomes decoupled
from the electron motion. However, the transitions to the
second excited state along with its fractional components are
still present—see the red dashed curve in Fig. 6.

For completeness we present the case of weaker SO
coupling—namely, we apply α = 25 meV nm. The energy
spectrum for strongly coupled dots (we chose Vb = 27 meV
to obtain similar coupling strength between S and T0 as
previously, i.e., the exchange energy J = 6.3 μeV) is pre-
sented in Fig. 7(a). For lower values of α one obtains a
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FIG. 7. (Color online) As Fig. 3 but for weaker SO coupling
strength. The map in (b) is obtained after 60 ns.

singlet and a triplet energy level at B = 0 and the avoided
crossing between the T+ and S energy levels occurs at B > 0.
Weaker SO interaction results also in a longer spin rotation
time [see Fig. 7(c)] and now the T+ → S transition occurs
in 7 ns (compared to 2.7 ns in Fig. 3). The exchange-driven
small-amplitude spin oscillations with τ = 328 ps are visible
in Fig. 7(c), along with fast oscillation due to spin precession.
In the map of spin transitions Fig. 7(b), both the double central
line and the half-frequency transitions to the S and T− states
appear. However, now the lines are narrower as compared
to the case of stronger SO interaction (as the amplitude of
the SO effective magnetic field that drives the spin transition
is decreased). The half-frequency transitions occur in 54 ns
(compared to 25 ns for α = 50 meV nm). Otherwise the EDSR
transition map remains qualitatively unchanged.

IV. CONCLUSIONS

In conclusion, we studied the electrically induced
transitions between the electron states in quantum dots. We
showed that the electron oscillations induced by an ac field are
accompanied by residual harmonics of the driving frequency.
We demonstrated that the fractional transitions observed in
EDSR experiments involve resonant amplification of the
harmonics in the electron dynamics when they match the Rabi
transition frequency. Moreover, we indicated that the resonant
amplification of higher harmonics is an intrinsic phenomenon
of a driven electron system which occurs also for a single
charge and without SO coupling.

In the two-electron system of the double dot when the ac
field is applied to only one of the dots, a nonzero interdot tunnel
coupling is necessary for the fractional transitions to appear
as it triggers the motion of both electrons. A consequence
of the nonzero exchange energy is the splitting of the main
resonance line into T0 and S final states. Thus the appearances
of the double resonant line and the fractional resonance have
a common origin.
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One- and two-electron systems confined in single and coupled quantum dots defined within a nanowire with a
finite radius are studied in the context of spin-orbit coupling effects. The anisotropy of the spin-orbit interaction
is discussed in terms of the system geometry and orientation of the external magnetic field vector. We find that
there are easy and hard spin-polarization axes, and in the quantum dot with strong lateral confinement electron
spin becomes well defined in spite of the presence of spin-orbit coupling. We present an analytical solution for
the one-dimensional limit and study its validity for nanowires of finite radii by comparing the results with a
full three-dimensional calculation. The results are also compared with the recent measurements of the effective
Landé factor and avoided crossing width anisotropy in InSb nanowire quantum dots [S. Nadj-Perge et al., Phys.
Rev. Lett. 108, 166801 (2012)].
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I. INTRODUCTION

There is a growing interest in gated semiconductor
nanowires in the context of possible applications for spin-
operating devices.1–4 These structures provide a good basis
for the creation of small electrostatic quantum dots with
confinement introduced by external potentials. Energy spectra
of such dots as determined5 by transport spectroscopy bear
distinct signatures of strong spin-orbit (SO) interaction which
results from the structure inversion asymmetry (Rashba SO
coupling6) or the bulk inversion asymmetry (Dresselhaus SO
interaction7). SO coupling mixes spin and orbital degrees of
freedom, thus opening the possibility of fully electrical control
of the electron spin.1–4,8,9 Moreover, SO coupling allows
for electron spin relaxation mediated by phonons,10,11 and
introduces anisotropic corrections to spin exchange interaction
for electrons in double quantum dots.12

The SO coupling opens avoided crossings5 in the quantum
dot energy spectra as a function of the external magnetic
field (B). The width of the avoided crossings between energy
levels of different spin states depends on the orientation of
the B vector, which reveals the spatial anisotropy of the SO
interaction.3,13–15 Moreover, the mixing of the spin states by
SO coupling determines an effective Landé factor (g factor)
and its anisotropy16 as a function of the magnetic field ori-
entation. In nanowire quantum dots the effective g-factor was
recently measured in electric dipole spin resonance (EDSR)
experiments2,3 for a two-electron spin-blocked configuration
or by magnetotransport measurements on electron17 and hole18

quantum dots. The anisotropy of SO interaction is a relevant
issue for spin qubit manipulation1 as well as for helical spin
liquids19 which in the proximity of a superconductor can be
used for observation of Majorana fermions.20

It is well known that in the presence of SO coupling,
the electron spin can be well defined in the stationary
eigenstates only for equal Rashba and Dresselhaus SO
coupling constants.21 This fact was exploited in a proposal
of a nonballistic spin field effect transistor21 and for the
prediction22 of a persistent spin helix.23 In the present work,
we demonstrate that in the limit of strong lateral confinement,
the electron spins confined in the quantum dot become well

defined in the direction perpendicular to the wire axis and
the external electric field vector in spite of the presence of
the Rashba coupling. We show that in a general case, the
extent of the electron spin polarization strongly depends on the
orientation of B reflecting the anisotropy of SO interaction.

For a description of narrow nanowires, a one-dimensional
model is commonly used.24 In this work, we present an
analytical form of eigenstates for this approximation for a
quantum dot defined in a nanowire. The analytical form of
the SO-coupled wave functions accounts for the anisotropic
spin polarization and explains the different strengths of the
spin-splittings for varied orientation of the magnetic field. We
study the applicability of the one-dimensional model for a
nanowire with a finite radius by comparing its results with
the three-dimensional calculation for various geometries of
the nanowire quantum dot. To relate the model results to the
experimental measurements, we study coupled two-electron
quantum dots, i.e., the configuration that is used for EDSR and
the spin exchange experiments. The obtained shape of the g

factor and the avoided crossing width dependence on magnetic
field orientation resemble the findings of the experiment of
Ref. 3 on InSb nanowire quantum dots.

II. THEORY

We consider a single-electron quantum dot defined in a nar-
row nanowire described by the three-dimensional Hamiltonian

h = h̄2k2

2m∗ + V (r) + HSO + 1

2
gμBB · σ, (1)

where k = −i∇ + eA/h̄ with the gauge A =
B(z sin φ,0,y cos φ). The magnetic field is aligned in
the xy plane with an angle φ between B and the
x axis—in such a case, the Zeeman term stands for
1
2gμBB · σ = 1

2μBgB(σx cos φ + σy sin φ), V (r) stands for
the confinement potential which we take in a separable
form V (r) = Vl(y,z) + VL(x) + |e|F · r, where Vl(y,z) is a
400-meV-deep two-dimensional circular quantum well of
radius R, VL(x) is an infinite quantum well with width L (see
Fig. 1), and F stands for the external electric field. We account
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FIG. 1. (Color online) (a) Sketch of the confinement potential V (r) of the nanowire quantum dot (with blue) and the single-electron charge
density (with red) calculated for Fz = 10 kV/cm. (b) Cross section of the confinement potential and the charge density for x = 0.

for Rashba SO coupling HSO = α0
∂V
∂r

· (σ × k) as the main SO
interaction type in the [111] grown InSb nanowires.3 Unless
stated otherwise, we assume the electric field F = (0,0,Fz)
with a nonzero component in the z direction (perpendicular
to the axis of the wire) due to the gating of the nanowire.1–4

We assumed a hard-wall confinement potential of the wire.
The electron wave function vanishes at the edge of a circular
quantum well Vl(y,z) [see Fig. 1(b)]. Therefore, the only part
of the potential whose gradient overlaps with the wave function
and thus gives rise to the SO coupling is the external electric
potential, i.e., HSO = α(σxky − σykx), where α = α0Fz.

To solve the Schrödinger equation, we rewrite the Hamil-
tonian Eq. (1) as h = hx + hy + hz + hns , where

hx = − h̄2

2m∗
∂2

∂x2
+ VL(x), (2)

hy = − h̄2

2m∗
∂2

∂y2
+ VB(y) + e2B2

2m∗ y2 cos2 φ, (3)

hz = − h̄2

2m∗
∂2

∂z2
+ VB(z) + e2B2

2m∗ z2 sin2 φ + |e|Fzz, (4)

are separable in the x-, y-, and z-direction spin-independent
parts. The infinite quantum wells VB(y) and VB(z) of width
2R define the computational box, and

hns = − ih̄eB

m∗

(
z sin φ

∂

∂x
+ y cos φ

∂

∂z

)

+ 1

2
gμbB[σx cos φ + σy sin φ] + HSO + Vl(y,z) (5)

is the nonseparable part that contains the spin dependency and
the potential of the cylindrical quantum well Vl(y,z).

The calculation procedure proceeds as follows. We calcu-
late eigenvectors of hx , hy , and hz on meshes containing 1000
points and use them for construction of a basis (which consists
of 8192 elements) in which the h Hamiltonian is diagonalized.
As a result, we obtain three-dimensional spin orbitals ψ(r,σ ).
Note that introducing the infinite quantum wells VB in the first
step fixes the basis for the diagonalization of the complete
Hamiltonian.

The solutions of the two-electron system described by the
Hamiltonian

H = h1 + h2 + e2

4πε0ε|r1 − r2| (6)

are found in the basis constructed from products of antisym-
metrized single-electron spin orbitals ψ(r,σ ),

	(r1,σ1,r2,σ2) = 1√
2

M∑
i=1

M∑
j=i+1

cij [ψi(r1,σ1)ψj (r2,σ2)

−ψi(r2,σ2)ψj (r1,σ1)], (7)

where the coefficients cij are found by diagonalization of
Hamiltonian Eq. (6) according to the configuration interaction
method with M = 20. The scheme treats the Coulomb inter-
action in an exact manner. For the calculation of the Coulomb
matrix elements, we use the two-step method that replaces
six-dimensional integrations by calculation of the Poisson
equation for the potential generated from single-electron wave
functions and integrate it with the product of the wave function
of the other electron.14

We adopt material parameters26 for InSb, namely m∗ =
0.014m0, g = −51, ε = 16.5, and α0 = 5 nm2. In the bulk of
the paper, we choose Fz = 50 kV/cm, which results in a SO
interaction constant α = 25 meV nm. Unless stated otherwise,
we take L = 300 nm.

III. RESULTS

A. Single electron in a finite thickness nanowire quantum dot

The lowest part of the energy spectrum of the single-
electron quantum dot is presented in Fig. 2. In the absence of
the magnetic field, all the levels are Kramer’s doublets. We
include the residual magnetic field B = 5 mT and inspect the
spin polarization along the magnetic field direction [calculated
as 〈sB〉 = 〈sx〉 cos(φ) + 〈sy〉 sin(φ)]. In Fig. 3(a), we observe
that the spin polarization undergoes oscillatory changes as a
function of B orientation. This reflects the presence of easy and
hard spin-polarization axes in the system. For the magnetic
field oriented perpendicular to the nanowire axis, the spin
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FIG. 2. (Color online) Single-electron energy spectrum for the
SO coupled nanowire quantum dot with radius R = 50 nm and
SO interaction constant α = 25 meV nm plotted with lines for two
orientations of the magnetic field. The crosses are the results obtained
from the asymptotic one-dimensional solution—see the text. With
|↑〉 and |↓〉 we mark the spin polarization of the states parallel and
antiparallel to the magnetic field, respectively, as found without SO
coupling.

is easily polarized—taking values close to 1 [h̄/2]. On the
other hand, for B oriented along the wire, the 〈sB〉 is around
0.885 [h̄/2]. The amplitude of the oscillations depends on the
nanowire radius [compare the curves in Fig. 3(a) for three
values of R] and the oscillations are the strongest for a narrow
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FIG. 3. (Color online) (a) Mean value of the spin along the
magnetic field direction obtained for the ground state of the nanowire
quantum dot with radius R = 10 nm (blue solid curve), R = 50 nm
(green dashed curve), and R = 100 nm (black dotted curve). (b) Spin
polarization of the second excited state for R = 50 nm. (c) Mean
value of the spin-y component for the magnetic field aligned along
the y direction as a function of the nanowire radius R. (a)–(c) are
obtained for B = 5 mT. Results for α = 50 meV nm correspond to
Fz = 100 kV/cm.

nanowire with R = 10 nm. The spin polarization of the excited
state is presented in Fig. 3(b). We observe that the amplitude of
the oscillation is stronger than the one obtained for the ground
state, but the spin polarization for φ = 90◦ is again close to 1
[h̄/2].

Let us inspect the degree of the maximal spin polarization
at the easy axis φ = 90◦. In Fig. 3(c), we plot the mean
value of the spin-y component of the ground state versus
the wire radius R. We observe that as the wire becomes
narrower, the spin polarization becomes almost complete (i.e.,
1 − 〈sy〉2/h̄ < 10−4 for R = 1 nm) despite the presence of the
SO coupling. The existence of directions in which the spin can
be exactly polarized should facilitate the qubit initialization
and increase the spin coherence times. On the other hand, as
the wire becomes wider, the spin polarization drops with the
slope of the curves in Fig. 3(c) depending on the SO coupling
constant α. Note that the extent of the wave function in the z

direction is limited also by the applied electric field.
When the magnetic field is increased, it splits the doublets—

see the energy levels in Fig. 2. The energy splittings obtained
for the magnetic field perpendicular to the nanowire axis (red
curves in Fig. 2) are stronger than those obtained for the
magnetic field parallel to the nanowire axis (black curves in
Fig. 2). In the following, we explain this observation.

B. Asymptotic solution (1D limit)

When the wire becomes narrow the energy of the states
excited in the radial direction rises. It is reasonable then
to inspect the case in which the radial degrees of freedom
are decoupled from the longitudinal one (the x direction).
Such a system is described by the one-dimensional (1D)
Hamiltonian,24,25

h1D = h̄2k2
x

2m∗ + VL(x) − ασykx

+ 1

2
μBgB(σx cos φ + σy sin φ), (8)

where kx = −i ∂
∂x

.
Generally, the analytical solution for a SO coupled confined

system are not known, with the exception of a special
case of equal strength of Rashba and Dresselhaus coupling
described in Ref. 21. Here we note, however, that in the
absence of the magnetic field (B = 0) the Hamiltonian (8)
commutes with the spin-y Pauli matrix and its eigenstates
have definite y component of the spin. We find that for a
quasi-one-dimensional nanowire, the spin orbitals (where N

stands for the orbital quantum number and ± denotes the spin
polarization of the state) have the form

	N± = 1√
2

(
1

±i

)
ϕN (x) exp

[
± iαm∗

h̄2 x

]
, (9)

where ϕN (x) are spin-independent eigenstates of Hamiltonian
(8) for α = 0 and B = 0. The eigenenergies of the Hamiltonian
(8) are E1D = Eα=0,N + ESO, where ESO = −α2m∗/(2h̄2) is
the energy shift to the whole energy spectrum introduced by
the SO interaction27 and Eα=0,N is an energy level of the N th
eigenstate obtained without SO coupling.

The magnetic field affects the energy levels of a strongly
confined electron mainly through the Zeeman spin-splitting.
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To investigate its influence on the SO eigenstates with an
orbital excitation N , let us diagonalize h1D for B > 0 in a
basis consisting of a degenerate pair 	N+ and 	N−. The
Hamiltonian matrix is(

〈	N+|h1D|	N+〉 〈	N−|h1D|	N+〉
〈	N+|h1D|	N−〉 〈	N−|h1D|	N−〉

)
, (10)

where the diagonal elements are defined as follows:

〈	N±|h1D|	N±〉 = E1D ± 1
2gμBB sin φ, (11)

while the off-diagonal elements are

〈	N±|h1D|	N∓〉
= ∓i

1

2
gμBB

∫
|ϕN |2

[
cos

(
2αm∗

h̄2 x

)
∓ i sin

(
2αm∗

h̄2 x

)]

× dx cos φ. (12)

Let us denote λN ≡ ∫ |ϕN |2 cos( 2αm∗
h̄2 x)dx and κN ≡

i
∫ |ϕN |2 sin( 2αm∗

h̄2 x)dx.
The eigenstates of the matrix (10) are

EN± = E1D ± 1
2gμBB

√
1 − (

1 − λ2
N + κ2

N

)
cos2 φ. (13)

The energy difference between the states depends on the orient-
ation of the magnetic field (angle φ) as well as the parameters
λN and κN that control the strength of the anisotropy of
the spin splittings for the rotated magnetic field. For the
symmetric infinite quantum-well confinement along the wire
(x direction), we obtain29

λ1 = h̄6π2 sin(Lαm∗/h̄2)

αm∗L(π2h̄4 − α2m∗2L2)
(14)

and

λ2 = 4h̄6π2 sin(Lαm∗/h̄2)

αm∗L(4π2h̄4 − α2m∗2L2)
(15)

and κ1 = κ2 = 0 for the two lowest orbital states. The λN

depends on the quantum dot length and the SO strength. In
Fig. 4, we present the λ1 parameter as a function of L and α.
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FIG. 4. (Color online) Parameter λ1 as a function of the dot length
L and SO coupling constant α. (b) Cross section of (a) for three
different dot lengths L.

With the light-green dashed curve, we depict the SO length
lSO = h̄/(m∗α). We observe that λ1 drops quickly when the
length of the dot becomes greater than the SO length. The
shape of the λ1 dependence on the SO strength for different
quantum dot lengths is presented in Fig. 4(b), showing that the
SO effects depend strongly on the quantum dot geometry and
that λ1 goes to 1 for vanishing SO coupling.

The smaller λN is, the stronger the SO coupling effects are.
In particular, for the magnetic field parallel to the nanowire
axis, the energy of the spin splitting is ES = gμBBλN .
Consequently, the splitting can even go to 0 due to strong
mixing of the spin states by the SO interaction [the light blue
region in Fig. 4(a)].

When the magnetic field is aligned in the direction per-
pendicular to the nanowire axis, i.e., φ = 90◦ or 270◦, the
off-diagonal elements of the matrix (10) vanish and the energy
levels are split by Zeeman energy with the bulk value of the
g factor. This is the reason for stronger spin splittings of the
red curves in Fig. 2. For this configuration, the spin orbitals
are separable into spin and orbital parts despite the presence
of SO interaction and they have the exact form of Eq. (9). For
any other orientation of the magnetic field, the off-diagonal
elements mix the eigenstates (9). This results in decreasing
the spin splittings by the SO interaction by an amount that
depends on λN and κN parameters—the spatial extent of the
wave function along the nanowire and the strength of the
SO coupling. Moreover, the electron spin is no longer well
defined as the electrons spin and orbital degrees of freedom
are entangled.

We plot the energy spectrum obtained from Eq. (13) (shifted
to match the energies obtained in the three-dimensional
calculation at B = 0) with the crosses in Fig. 2. The spin
splitting obtained from the one-dimensional model well
describes the results of the three-dimensional calculation. The
only discrepancy is visible for the energy levels of the first
and the second excited states for B > 100 mT, which is due to
mixing of these two states by the SO interaction.

As the magnetic field is rotated between the easy and
hard axes, the spin polarization of the states changes, which
results in changes of the spin-splitting strength. The latter
term in Eq. (13) introduces Zeeman energy splitting between
the energy levels of the two states. We can see that

g∗
N = g

√
1 − (1 − λ2

N + κ2
N ) cos2 φ (16)

is an effective g factor that is dependent on the orientation of
the magnetic field with the angle φ. With the crosses in Fig. 5(a)
we plot the effective g factor as obtained from Eq. (16) along
with the values obtained in the three-dimensional calculation
(calculated as g∗ = E/μBB, where E is the energy
difference between the energy of the first excited state and
the ground state—see Fig. 2) for different nanowire radii. For
the nanowire radius R = 10 nm, the analytical solution and the
result of the three-dimensional calculation match. For larger
values of R, the shapes of the dependences comply, only the
amplitude is different, with the biggest discrepancy being for
the wide nanowire with R = 100 nm. The effective g-factor
dependence obtained from the two excited states as calculated
from Eq. (16) is plotted in Fig. 5(a) with circles. We observe
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FIG. 5. (Color online) (a) Effective g factor obtained for a
nanowire quantum dot with R = 10 nm (red solid curve), R = 50 nm
(blue dashed curve), and R = 100 nm (green dotted curve) obtained
for B = 100 mT. The symbols presents results obtained from Eq. (16)
for the two lowest energy states N = 1 (black crosses) and for the
second and third excited states N = 2 (black circles). (b) Difference
between the g factor calculated for Fx = Fy = 0, Fz = 50 kV/cm,
and calculated in the presence of the electric fields in the x and y

directions as marked in the figure.

that due to the increased value of λ2, the amplitude of the
oscillation is greatly increased.

C. Additional SO terms

Additional external electric fields in the device that results
from, e.g., a source and drain voltage difference or from gating
of the nanowire, can activate additional terms of the Rashba
Hamiltonian, which takes the general form

HSO = α0[Fx(σykz − σzky) + Fy(σzkx − σxkz)

+Fz(σxky − σykx)]. (17)

We inspect the influence of these additional terms on the
anisotropic g factor including in addition to Fz = 50 kV/cm
the electric field in the x direction (resulting from the bias
voltage) and assuming the electric field in the y direction Fy =
5 kV/cm. Figure 5(b) presents the difference between results
obtained with additional fields Fx,Fy and results obtained
for only Fz present. Only slight differences are observed
with the highest magnitude at the easy axes, i.e., φ = 90◦
and 270◦.

D. Two-electron results

The experimentally probed anisotropy of the g factor
is extracted from the slopes of resonance lines in EDSR
experiments on double quantum dots in the two-electron
regime.2,3 Figure 6(a) presents the two-electron energy spec-
trum of weakly coupled quantum dots defined in a nanowire
with radius R = 30 nm obtained in the three-dimensional
calculation. Results for the magnetic field oriented along the
nanowire axis with φ = 0◦ (perpendicular to the nanowire
with φ = 90◦) are plotted with solid (dotted) curves. The
confinement potential includes now a potential barrier of 60 nm
width that separates the electrons in adjacent dots both of
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FIG. 6. (Color online) (a) Two-electron energy spectrum of
coupled nanowire quantum dots with radius R = 30 nm. Solid curves
present results for φ = 0◦ and dotted curves for φ = 90◦. With
|↑↑〉, |↓↓〉, |↓↑〉, |↑↓〉 − |↓↑〉, and |↑↓〉 + |↓↑〉, we mark the spin
configuration of the states parallel or antiparallel to the magnetic
field as found without SO coupling. The inset presents the energy
levels for low values of the magnetic field where the avoided crossing
appears. (b) With the curves, the effective g factor is calculated from
the energy splittings between the ground-state energy level and the
energy levels depicted with blue solid (E1) and red dashed (E2)
curves in (a) for B = 200 mT. The circles correspond to the effective
one-electron g factor as obtained from Eq. (16) (shifted down by 1)
for a single quantum dot with length L = 120 nm.

120 nm width. At B = 0, the ground state is a spin singlet
(|↑↓〉 − |↓↑〉) energy split from the degenerate triplet states
[see the inset to Fig. 6(a)]. We tune the barrier height to 5 meV
to match the singlet-triplet separation of �5 μeV as measured
in Ref. 3.

At B = 3 mT, an avoided crossing between the two lowest
energy levels appears for φ = 0◦ due to spin mixing by the SO
interaction. The width of the anticrossing is E � 8.2 μeV,
which is similar to the value measured in Ref. 3, i.e., �5 μeV.
The experiment performed in Ref. 3 established that the
anticrossing vanished for φ = 90◦ and 270◦, which is also the
case in the present results—the anticrossing vanishes when
the magnetic field orientation is parallel to the easy axes of the
spin polarization.

After the anticrossing, the magnetic field splits the energy
levels of the two spin-polarized triplet states (|↑↑〉 and
|↓↓〉) by the Zeeman energy. The blue solid and red dashed
curves in Fig. 6(a) whose energy does not change (after
the anticrossing) with B are the singlet (|↑↓〉 − |↓↑〉) and
triplet (|↑↓〉 + |↓↑〉) states with zero spin component in the
direction along the magnetic field. Those levels are split by
exchange interaction25 (additional splitting of those two energy
levels occurs when the g factor along the structure is not
constant2–4).
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The magnetic-field orientation (angle φ) (i) influences the
strength of the spin polarization of the triplet states |↑↑〉, |↓↓〉
which results in a change of the slope of the corresponding
energy levels, and (ii) changes in the exchange energy (spacing
between energy levels of |↑↓〉 − |↓↑〉 and |↑↓〉 + |↓↑〉 states,
plotted with blue solid and red dashed curves in Fig. 6(a).
These two effects lead to a dependence of the effective g

factor on φ which we calculate from the energy splittings
between the ground state and the first and second excited
states and plot in Fig. 6(b) with the blue solid and red dashed
curves, respectively. We find that the shape of both curves in
Fig. 6(b) matches the shape of the single-electron dependence
presented in Fig. 5; only the amplitude of the oscillations is
lower. As described by Eq. (16) for the single-electron case, the
amplitude of g-factor oscillations depends on the dot length. In
the present case, each of the coupled quantum dots has a length
of L = 120 nm. The effective g factor obtained for a single dot
of this length as calculated from Eq. (16) is plotted with circles
in Fig. 6(b). Obtained oscillations have a similar amplitude to
that obtained for the two-electron system. This suggest that
the low amplitude in the two-electron case results from the
fact that each electron resides in a separate dot and the shape
of the oscillations is controlled mainly by the single-electron
spin-polarization anisotropy process described previously.

The shape of the g-factor dependence is similar to the one
obtained in the experiment performed in Ref. 3. In particular,
an agreement is obtained in the context of the slight change
of the oscillation amplitude of the red dashed and blue solid
curves in Fig. 6(b). This difference in amplitudes is due to a
modification of the exchange energy that separates the energy
levels of the singlet (|↑↓〉 − |↓↑〉) and triplet (|↑↓〉 + |↓↑〉)
states by the rotated magnetic field. However, the experimental
dependence of the effective g factor is shifted (with minima
at φ = 124◦ and 304◦) with respect to the present result. We
performed calculations for quantum dots in a nanowire of
larger radius (R = 100 nm) ruling out the possible orbital
effects of the magnetic field as a reason for the shift. Also
the additional terms of Rashba coupling operator are not
responsible for such a shift, as discussed in Sec. III C. On

the other hand, the g factor in quantum dots is affected by
the local strain and asymmetries in the structure30 which can
influence the g factor as a concurrent process to the anisotropic
spin polarization.

IV. SUMMARY AND CONCLUSIONS

In the present work, we studied the anisotropy of spin
polarization in a narrow nanowire quantum dot in the presence
of SO coupling. Solving the three-dimensional Schrödinger
equation, we showed that the strength of spin polarization
in the presence of Rashba SO interaction depends on the
orientation of the magnetic field, and that there are hard
and easy spin polarization axes. We explained the existence
of these axes by the intrinsic tendency of SO coupling to
polarize spins in the direction perpendicular to the nanowire.
For the magnetic field aligned in this direction, the electron
spin polarization can be nearly complete depending on the
nanowire radius. We presented an analytical solution for
the one-dimensional limit in which spin polarization can be
complete, and we compared its results with the calculation
for a finite thickness nanowire. Spin-polarization anisotropy
results in an effective g-factor dependence on the magnetic-
field orientation which is stronger for the excited states.
The anisotropy of single-electron spin polarization results in
changes of the avoided crossing width in the lowest part of
the two-electron energy spectra. The magnitude and position
of the extrema of this dependence match those founds in
the experiment. Also, the form of the g-factor dependence
resembles that obtained in the experimental studies.
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1. Introduction

Coherent spin control is one of the prerequisites for creation of a solid-state quantum

computer operating on spin qubits. In recent years gate defined nanowire [1]

double quantum dots have been successfully used for experimental demonstration

[2, 3, 4, 5, 6, 7, 8] of electrical control of single spins [9]. The spin rotations are performed

by means of electric dipole spin resonance (EDSR) where spin-orbit (SO) interaction

[10, 11] is used to electrically control the spin excluding the need for oscillating magnetic

field in the device [12]. The spin oscillations are probed exploiting the spin blockade

[20] of two-electron system where the current cycle (0, 1) → (1, 1) → (0, 2) → (0, 1) [the

numbers denote number of electrons in the adjacent quantum dots] is blocked at the

(1, 1) → (0, 2) transition when the spin configurations of the (1, 1) and (0, 2) states do

not match. For low bias the only available (0, 2) state is the spin singlet so the current

is blocked if the system is initialized in one of the spin-polarized triplets. The blockade

is lifted when the spin of oscillating electron is rotated such the total spin of the (1, 1)

state is changed from S = 1 to S = 0. Relaxation of the (1, 1) state that follows the

spin rotation opens the tunneling of the single electron through the double dot and is

mediated by phonons that disperse the excess energy between the (1, 1) and (0, 2) states.

Strong SO coupling in InSb and InAs nanowires that is useful for effective control

of the spins leads to spin relaxation [14, 15, 16] that results in lifting the spin blockade,

limits the available magnetic fields for the EDSR [17] and results in the leakage current

that exhibit dips or peaks at low magnetic field depending on the interdot coupling

[18]. In the present work we study phonon mediated electron relaxation in electrically

driven nanowire quantum dots. We find several unexpected features that are crucial for

the mechanism of the spin blockade lifting: i) in all regions where the spin conserving

(1, 1) → (0, 2) relaxation occurs the spin non-conserving relaxation from (1, 1) triplet

state with spins polarized along the magnetic field is of a very similar effectiveness.

ii) For small magnetic fields where (0, 2) singlet is the ground state this leads to the

spontaneous lifting of the spin blockade from this triplet. iii) On the other hand the

relaxation from triplet with spins oriented antiparallel to the magnetic field orientation

is two orders of magnitude slower so the blockade is maintained. iv) At higher magnetic

fields when the triplet becomes the ground state spin rotation accompanied by charge

redistribution results in lifting spin blockade through direct transition to (0, 2) singlet

which is visible in recent experimental map [5].

Experiments with lifting the pauli blockade are performed in external magnetic field

to induce the Zeeman splitting of electron energy levels. Since the Zeeman splitting of

the nuclear levels is much smaller, the direct exchange of spins between the electron and

the nuclei is suppressed. Changes of the nuclear field takes place in 10-100 microsecond

[19] while in the present work we focus on the spin evolution in a time scale of order

of tenths on nanoseconds. For that reason we do not consider effects of nuclear spin

dynamics [5, 17, 20, 21, 22].
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2. Theory

The considered two-electron system is described by the Hamiltonian H(t) =
∑

i h
i(t) +

e2/(4πεε0|r1 −r2|) where hi(t) is single electron energy operator. For a narrow nanowire

the charge occupies ground state of lateral quantization (here taken in the Gaussian

form ψ(y, z) = (
√
πl)−1 exp[−(y2 + z2)/2l2], with l = 20 nm) which leads [23] to the

two-electron Hamiltonian,

H1D(t) = h1
1D(t) + h2

1D(t) +

√
π/2

4πε0εl
erfcx

[ |x1 − x2|√
2l

]
, (1)

with single-electron energy operator

h1D(t) =
~2k2

x

2m∗ + V (x, t) − ασykx +
1

2
µBg(x)Bσx, (2)

where ~kx = −i~∇x is momentum operator and HSO1D = −ασykx stands for Rashba

SO coupling which results from averaging the HSO = α(σxky − σykx) Hamiltonian in

the y-direction. We allow for position dependent g-factor in the device [2, 4, 5] and

take g(x) = g[1 + βH(x)] where H(x) is Heavyside step function and β = 0.1 – g-

factor in the right dot is 1.1 of the value in the left dot. The potential is separated

into V (x, t) = VQD(x) + V ′(x, t) where quantum dot confinement is described by

VQD(x) = Vc(x) + eFbiasx. Vc defines potential of two quantum dots of 138 nm width

each separated by potential barrier of 25 nm width and 40 meV height. The driving

AC electric field is assumed active in the left dot [2], so the time dependent part of the

potential takes the form V ′(x, t) = eFACxf(x) sin(ωACt) where f(x) = 1 in the left dot

and 0 outside – see the inset to Figure 1(a).

For the description of two-electron electric dipole spin resonance we first obtain the

initial states for the time evolution. We calculate eigenstates of the Hamiltonian (1) for

t = 0 using configuration interaction scheme where the n-th two-electron spin-orbital is

constructed in a basis consisting slater determinants, i.e.,

Ψn(x1, σ1, x2, σ2, t = 0) =
N∑

i

N∑

j=i+1

An
ij [ψi(x1, σ1, t = 0)ψj(x2, σ2, t = 0) − ψi(x2, σ2, t = 0)ψj(x1, σ1, t = 0)](3)

where the coefficients An
ij are found by diagonalization of Hamiltonian (1). Spin-

orbitals ψ(x, σ, t = 0) are found by exact diagonalization of h1D(t = 0) on a mesh

with N = 2 × 201 points. We use basis consisting of N = 50 single-electron orbitals

which provides accuracy of two-electron energy levels better than 0.5 µeV.

Time evolution is performed using time dependent perturbation theory. The two-

electron Hamiltonian is separated into,

H1D(t) = H1D +H ′
1D(t), (4)

whereH1D is the time independent part andH ′
1D(t) = eFAC [x1f(x1)+x2f(x2)] sin(ωACt)

contains oscillating electric field FAC .
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The eigenstates Ψn(x1, σ1, x2, σ2, t = 0) (with corresponding eigenenergies En) of

Hamiltonian (1) are used for construction of a basis for time evolution where the two-

electron spinor is expressed as

Ψ(x1, σ1, x2, σ2, t) =
N∑

n

cn(t) exp(−iEnt/~)Ψn(x1, σ1, x2, σ2, t = 0) (5)

and the time evolution of each coefficient cn is described by the equation

d

dt
cn(t) = − i

~

N∑

m=1

cm(t)⟨Ψn|H ′
1D(t)|Ψm⟩. (6)

We use N = 20 basis states which provides agrement between the time evolution

described above with an exact solution of the time dependent Shrödinger equation in

the described system.

To describe the phonon mediated relaxation we allow for the transitions between

the two-electron states with a rate given by the Fermi golden rule. The relaxation rate

between the initial Ψi and final Ψf states is described by,

τ−1
if =

2π

~
∑

ν,i=1,2

∫

q

dq|Mν(q)|2 × |⟨Ψf |e−iqri|Ψi⟩|2δ(|Ef − Ei| − Eq), (7)

where the phonon dispersion relation is Eq = ~cν |q| and cν is the sound velocity. The

sum in (7) goes over three types of electron-phonon scattering (ν) due to: deformation

potential with longitudinal mode[24] (ν =LA-DP) with,

|MLA−DP (q)|2 =
~D2

2dcLA

|q|, (8)

where D stands for the crystal acoustic deformation potential constant, d is density, and

cLA is sound velocity of phonon LA mode. Electron-LA phonon scattering due to the

piezoelectric field [25] (ν =LA-PZ),

|MLA−PZ(q)|2 =
32π2~e2h2

14

ε2dcLA

(3qxqyqz)
2

|q|7 , (9)

where h14 is PZ constant and electron-TA phonon scattering due to the piezoelectric

field (ν =TA-PZ),[25]

|MTA−PZ(q)|2 = 2 × 32π2~e2h2
14

ε2dcTA

∣∣∣∣
q2
xq

2
y + q2

yq
2
z + q2

zq
2
x

|q|5 −(3qxqyqz)
2

|q|7
∣∣∣∣ , (10)

where the multiplication by two results from two transverse phonon modes.

The relaxation is included into time dependent calculation such the amplitude

|cn(t)|2 of each eigenstate is changed due to relaxation to all lower energy states and

is increased due to relaxation from higher energy states with corresponding transition

rates τif :

|cn(t+ ∆t)|2 = |cn(t)|2 +
N∑

m=n+1

τ−1
mn|cm|2∆t−

n+1∑

m=1

τ−1
nm|cn|2∆t. (11)
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This corresponds to 0K temperature where the energy instantly disperses and results

in a half-life time of an i’th state defined as T1/2 = ln(2)/τif due to relaxation to f ’th

state.

We assume material parameters for InSb, i.e. electron effective mass m∗ = 0.014,

g = −51, dielectric constant ε = 16.5 and take the Rashba constant α = 10 meVnm.

The AC field amplitude FAC = 0.05 kV/cm is assumed. For calculation of phonon

mediated relaxation we take [26] D = 5775 kg/m3, h14 = 1.41 × 109 V/m after [25] and

we take sound velocities: cLA = 3.9 × 103 m/s after [27] and cTA = 1.9 × 103 m/s from

[28].

3. Results
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Figure 1. (a) Energy levels of two-electron double quantum dot as a function of bias

electric field for B = 50 mT in the presence of spin-orbit interaction. The arrows

present approximate spin polarization of electrons in the dots. The inset present

schematics of the considered confinement potential. (b) Half-life time of excited states

due to phonon mediated relaxation to the (0,2) singlet state. The colors of curves

denote initial state of relaxation. The symbols (curves) corresponds to the results

obtained without (with) SO interaction.

The charge distribution in the double dot is controlled by external voltages applied

along the structure. Figure 1(a) presents the lowest part of the energy spectrum (the

subsequent energy levels – of (0,2) triplets – are above 5 meV) as a function of bias

electric field for B = 50 mT. For the most negative values of Fbias the ground state

is a singlet |•, ↓↑ − ↑↓⟩ state for which both electrons reside in the right dot [(0,2)

configuration]. The four excited states correspond to single occupancy of each dot [(1,1)

configuration] and energy of those states only weakly change as a function of bias electric
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field. The two close in energy states, i.e. | ↓, ↑⟩ and | ↑, ↓⟩ correspond to definite and

opposite spin configurations in each dot (i.e., in the | ↓, ↑⟩ state spin of the electron in the

right dot – where the g-factor takes the highest value – is polarized along the magnetic

field) resulting from mixing spin-zero triplet with singlet state by the g-factor mismatch

between the dots. The two triplets | ↑, ↑⟩, | ↓, ↓⟩ are split be Zeeman interaction.

Let us inspect relaxation times of the four excited (1,1) states. In Figure 1(b) we

present half-life times of excited states due to relaxation to the ground state singlet.

In the absence of SO interaction phonon scattering couples only states with the same

total spin. Only the half-life times of | ↑, ↓⟩ and | ↓, ↑⟩ have finite values and they are

presented with the crosses in Figure 1(b). At low values of Fbias the times are of order of

milliseconds but when the energy differences between the initial states and (0,2) singlet

become lower the half-life times rapidly drop allowing for (1, 1) → (0, 2) spin-conserving

relaxation within nanoseconds for Fbias > −0.16 kV/cm.

When SO coupling is included the spin polarization of the states becomes only

approximate. The relaxation times of | ↓, ↑⟩ and | ↑, ↓⟩ states do not change – see the

curves and crosses in Figure 1(b). However now relaxation from all the (1,1) states to

(0,2) singlet is open. For most negative values of Fbias half-life time of triplet states is

longer than tenths of milliseconds but when the bias field is increased the half-life time

of | ↑, ↑⟩ triplet becomes about the same as the two spin opposite states lifting the spin

blockade. Only the | ↓↓⟩ state remains effectively blocked with relaxation time longer

by two orders of magnitude from the rest of the (1,1) states.

-0.2 -0.18 -0.16 -0.14
Fbias [kV/cm]

10
-110
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410
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Figure 2. Half-life time of the | ↑, ↑⟩ due to relaxation to ground state singlet mediated

by different electron-phonon scattering types.

In Figure 2 we present impact of the individual electron-phonon coupling types on

the relaxation time of the | ↑, ↑⟩ to the |•, ↓↑ − ↑↓⟩ state. We observe that LA-DP

scattering dominates for almost all values of Fbias. Only when the energy separation

between | ↑, ↑⟩ triplet and the |•, ↓↑ − ↑↓⟩ singlet becomes small [see Figure 1(a)] the

TA-PZ term starts to dominate giving half-life times T1/2 ≃ 1 ns.

Discussed lifting of the blockade from | ↑↑⟩ triplet is not specific to particular

parameters as we checked for different strengths of SO coupling and the dot size. We

calculated half-life times of excited states as a function of bias voltage for different

value of spin-orbit coupling strength [see Figures 3(a),(d)], length of the dots [see
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Figure 3. Lowest part of the energy spectrum obtained for (a) spin-orbit interaction

constant increased to α = 20 meVnm (b) length of each dot increased by 50 nm and

(c) increased radius of the nanowire that results in an spread of wavefunction in the

lateral direction such l = 40 nm. (d)-(f) present half-life times of excited states due to

relaxation to ground state singlet |•, ↓↑ − ↑↓⟩ obtained for parameters corresponding

to upper plots.

Figures 3(b),(e)] and the nanowire radius that controls the spread of lateral gaussian

wavefunction [see Figures 3(c),(f)]. We observe that in each case the situation is

generally the same as described previously, i.e., either the relaxation from all excited

states is at least of order of milliseconds or the relaxation from | ↑, ↑⟩ triplet state with

spins polarized along the magnetic field is faster than relaxation from | ↓, ↑⟩ and | ↑, ↓⟩
states effectively lifting the spin blockade from the former.

The experimental studies [7] report spin coherence time of order of tenths

nanoseconds and coherent manipulation over a single spin up to 100 ns. We therefore

focus on Fbias range where the relaxation times are of order of tenths of nanoseconds

– hereafter we take Fbias = −0.15 kV/cm – that allow for deblocking of single-electron

current through the double dot after spin rotation in EDSR experiments. In Figure 4(a)

we plot energy levels as a function of the magnetic field B. For B = 0 the excited state

is fourfold degenerate due to high interdot barrier – negligible exchange coupling. When

the magnetic field is increased the energy levels of the two spin polarized triplets | ↑, ↑⟩
and | ↓, ↓⟩ are split by the Zeeman interaction. On the other hand the energy levels

of the two spin-opposite states – | ↓, ↑⟩ and | ↑, ↓⟩ – are weakly split due to g-factor

mismatch in the dots. At B = 0.1 T an anticrossing between the energy levels of triplet

| ↑, ↑⟩ and (0, 2) singlet states appear followed by the change of the ground state.

Figure 4(b) presents half-life times of excited states due to relaxation to (0,2) singlet.

We observe that the relaxation from spin antiparallel | ↓, ↑⟩ and | ↑, ↓⟩ states occurs

within few nanoseconds regardless of B value. As the energy separation between energy

levels of | ↑, ↑⟩ and (0,2) singlet decreases the relaxation time drops and after B = 50 mT

the half-life time of this state is even lower than the half-life time of spin-antiparallel

states. On the other hand relaxation from | ↓, ↓⟩ state is slow and the half-life time

grows for increasing magnetic field until B = 0.1 T. This shows that for magnetic field
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Figure 4. (a) Energy spectrum as a function of the magnetic field. Straight arrows

denote transitions due to phonon relaxation. Curved arrows depict available EDSR

resonances from the triplets. (b) Half-life time of excited states due to phonon mediated

relaxation. Results obtained for Fbias = −0.15 kV/cm.

range before the anticrossing only the | ↓, ↓⟩ triplet provides spin blockade as the | ↑, ↑⟩,
| ↓, ↑⟩ and | ↑, ↓⟩ states decay quickly into |•, ↓↑ − ↑↓⟩.
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Figure 5. (a)-(d) Transitions between the eigenstates during the time evolution at the

resonances marked with the symbols. (e)-(h) Probability of (0,2) occupation averaged

during the 30 ns time evolution obtained for subsequent (1,1) states taken as the initial

state of the time evolution – the spin configuration of the initial state is denoted in

the left bottom corner of each plot.

In EDSR experiments the two-electron system can initialize in any of the low energy

states within the transport energy window. We therefore study the time evolution taking
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each of the (1,1) states with the energy levels depicted in Figure 4(a) as an initial

state. In Figure 5(e)-(h) we present (0,2) occupation probability (which would allow for

tunneling of one of the electrons outside the dot lifting the blockade) averaged during

30 ns time evolution as a function of the magnetic field and the electric field frequency.

For | ↑↑⟩ taken as the initial state the probability is presented in Figure 5(e). At the

left part of the map we observe increasing probability in the background as a function of

B due to spin relaxation that results in spontaneous lifting of spin blockade. At B = 0.1

T the phonon mediated spin-orbit relaxation to singlet (0,2) from | ↑, ↑⟩ stops as the

latter becomes the ground state – the background of the plot shows nearly zero (0,2)

occupation probability. However we observe several resonance lines with an increased

probability. The resonance line (△) corresponds to the spin rotation in the left dot

(| ↑, ↑⟩ → | ↓, ↑⟩) accompanied by the phonon mediated relaxation to the |•, ↓↑ − ↑↓⟩
singlet which results in an increase of the (0, 2) occupation probability – see Figure 5(a)

where we present the probability |cn|2 of finding the system in the n’th state during

the time evolution. The (♢) transition is related to the spin rotation in the right dot

which is much less effective due to presence of the AC electric field only in the left dot

and high interdot barrier which results in a narrow resonance line. The bottom line

marked with (�) corresponds to the direct transition to the (0, 2) singlet that involves

charge reconfiguration between the dots – see Figure 5(b). Note that line of increased

probability due to | ↑, ↑⟩ → |•, ↓↑ − ↑↓⟩ transition is not observed for B < 0.1 T as in

this region the spin relaxation of the triplet results in its fast deexcitation to the ground

state with rate that exceeds the EDSR transition.

In Figures 5(f), (g) one can observe mainly nonzero (0,2) occupation probabilities

due to fast spin-conserving relaxation of | ↓, ↑⟩ and | ↑, ↓⟩ to the |•, ↓↑ − ↑↓⟩ state as

discussed previously. In fact this relaxation is fast enough that one can observe lines

of lowered probability when the system already relaxes into singlet (0,2) and is driven

back to one of the excited states.

For the | ↓, ↓⟩ triplet taken as the initial state outside the resonances the (0,2)

occupation probability is nearly zero at Figure 5(h) as the phonon mediated relaxation

from this state is slow – see the blue curve in Figure 4(b). The lines that go through the

diagonal of the plot – (�), (N) – corresponds to the transition to the | ↓, ↑⟩ and | ↑, ↓⟩
states respectively accompanied by relaxation to |•, ↓↑ − ↑↓⟩ [see Figure 5(d)] and the

line at the left upper part of the plot – (�) – is a direct transition to the (0, 2) singlet

that does not involve phonon mediated relaxation [see Figure 5(c)].

Note that in maps of Figure 5(a) and (d) also lines of increased probability at

the half frequency of the (�) and (�) transitions are visible which is due to resonant

harmonic generation by the driven electrons [29].

The experimentally [5] measured resonances at current maps are obtained from

many sequential events of single electron transport through the structure. In each of

them the system can initialize in any of the (1,1) states. We therefore calculate the

total probability of (0,2) occupation by summing the results for initial states presented

in Figures 5(e)-(h). For each value of B the probability obtained without the oscillating
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Figure 6. (a) Probability of (0,2) occupation averaged over the 30 ns time evolution

calculated as a sum of results obtained for initial states with (1,1) occupation. For

each B value the (0,2) occupation probability obtained for ~ωAC = 0 (in the absence

of driving electric field) was subtracted from the results. (b) Same as (a) but without

phonon mediated relaxation. (c) Same as (a) but without g-factor difference between

the dots.

electric field (due to pure relaxation) is subtracted to mimic the experimental procedure

of [5]. The (0,2) occupation probability is displayed in Figure 6(a). For low values of

B we observe two lines at the diagonal of the map that corresponds to the transitions

from | ↑, ↑⟩ state – rotation of the spin down to spin up in the left dot (bright line) or in

the right dot (faint line) accompanied by relaxation to (0,2) singlet. After singlet-triplet

anticrossing at B = 0.1 T the lines correspond to transition from both the triplets. At

B = 0.1 T additional resonance line starts at the bottom of the plot that corresponds

to spin rotation with charge reconfiguration from | ↑, ↑⟩ triplet. Note that there is no

similar line corresponding to transition from the | ↓, ↓⟩ state as it is compensated by the

lowered probability obtained for evolution starting from | ↓, ↑⟩ and | ↑, ↓⟩.
To better expose the impact of the phonon mediated relaxation on the lifting of

the blockade in EDSR we calculated map of (0,2) occupation probability with neglected

phonon mediated relaxation and display the results in Figure 6(b). Now all of the

resonances correspond to direct transition to S(0,2) induced by the AC electric field.

We observe resonance lines which previously [compare with Figure 6(a)] were masked

by the spontaneous relaxation to the S(0,2) state and are not present in Figure 6(a).

Such lines are not present in the experimental maps [2, 3, 4, 5, 6, 7, 8]. Moreover the

resonance lines at the diagonal of the plot which are found in all the experimental maps

are present exclusively for active phonon mediated relaxation as it allows for the decay

of the | ↑, ↓⟩ and | ↓, ↑⟩ states to the (0,2) singlet lifting the spin-blockade.



Spontaneous and resonant lifting of the spin blockade in nanowire quantum dots 11

Results of Figure 6(a) seem to be related to the recent experimental work of [5]

(Figure 2) that probed wider range on magnetic field as compared with the previous

experimental studies [2, 3, 4, 6, 7]. Work [5] deals with EDSR involving dynamical

nuclear polarization that compensates for the g-factor gradient within the structure. In

such a case the two lines at the diagonal of the plot are merged into a single reconance

line as presented in Figure 6(c) due to degeneracy of | ↓, ↑⟩, | ↑, ↓⟩ states. Although

our modeling neglects the hyperfine field and its changes, our results indicate that the

prominent features of the experimental data – in the background of EDSR spectra –

are related to the ground-state singlet-triplet transition (the appearance of line that

corresponds to (�) direct transition) that in the present results occurs near B = 0.1 T.

Note, that the critical B for the singlet-triplet transition in our modeling is lower due

to higher value of the g-factor in InSb.

4. Conclusions

In conclusion we have presented the role that spin relaxation and EDSR plays on lifting

the spin blockade in coupled nanowire quantum dots using numerical modeling that

incorporates EDSR and phonon mediated relaxation. We found that spin relaxation

can lead to spontaneous lifting of the spin blockade such that the resonances are

observed only from a single spin-blocked triplet state. The change of the ground state in

higher magnetic fields leads to spin blockade of both the triplets and reveals additional

resonance to the (0,2) singlet that do not involve phonon mediated relaxation and which

is present in recent experimental results.
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